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Abstract

The main focus of this thesis is the connection between the L2-Betti numbers of RFRS
groups and the existence of epimorphisms to Z with kernels having certain desirable
properties.

In particular, we show that if G is a RFRS group of type FP,(Q) for some n > 0,
then G has a finite-index subgroup H < G admitting an epimorphism H — Z with
kernel of type FP,(Q) if and only if bEQ)(G) =0 for all # < n. A consequence is that
the fundamental group of any closed hyperbolic manifold with cubulated fundamental
group virtually algebraically fibres with kernel of type FP(Q).

We also prove that if G is a RFRS group of type FP(Q) and with cdg(G) = n,
then G admits a virtual map to Z with kernel of rational cohomological dimension
n — 1 if and only if bg)(G) = 0. In particular, we show that a finitely generated
RFRS group of cohomological dimension two is virtually free-by-cyclic if and only
if its second L2-Betti number vanishes (we stress that the free kernel of the free-by-
cyclic group is finitely generated if and only if the first L2-Betti number vanishes as
well). We obtain more general results in the wider class of residually poly-Z groups.
We also prove analogues of the results in this and the previous paragraph over fields
of positive characteristic, where the L2-Betti numbers must be replaced with suitable
positive characteristic analogues.

Finally, and in a slightly different direction, we show that any group algebra of
a torsion-free 3-manifold group embeds into a division ring, and as a consequence
show that group algebras of torsion-free 3-manifold groups satisfy Kaplansky’s Zero

Divisor Conjecture.
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Chapter 1

Introduction

Virtually special groups, introduced by Haglund and Wise in [HWO08], play a central
role in geometric group theory and low-dimensional topology. A group G is virtually
(compact) special if a finite-index subgroup H < G acts properly (and cocompactly)
on a CAT(0) cube complex X such that the hyperplanes of the quotient X/G avoid
certain pathologies, which are outlined in [HWO08| but will not be important here.
The list of groups known to be virtually special is now extensive, and includes finitely
generated free groups, surface groups, right-angled Artin groups, limit groups [Wis21],
one-relator groups with torsion [Wis21|, one-relator groups with negative immersions
[Lin22|, hyperbolic F,,-by-Z groups [HW10a|, small cancellation groups [Wis04|, Cox-
eter groups [HW10b|, fundamental groups of finite-volume hyperbolic 3-manifolds
[Agol3, Wis21]|, hyperbolic groups acting geometrically on CAT(0) cube complexes
[Ago08|, some relatively hyperbolic cubulated groups [Rey23|, simple type lattices in
SO(n,1) [BHW11], and many more.

The example of finite-volume hyperbolic 3-manifold groups mentioned above is
historically important, as it relates to Thurston’s Virtual Fibring Conjecture, which
predicted that every finite-volume hyperbolic 3-manifold admits a finite-sheeted cover
that is a surface bundle over S*. In [Ago08], Agol isolated the group-theoretic resid-
ually finite rationally solvable (or RFRS) property—which special groups possess—and
showed if M is a compact, irreducible 3-manifold such that (M) is virtually RFRS,
then M virtually fibres over the circle if and only if x(M) = 0. The Virtual Fibring
Conjecture was resolved by Agol [Agol13| and Wise [Wis21], building on the previous
work of Kahn and Markovié¢ [KM12|, by showing that if M is a finite-volume hyper-
bolic 3-manifold, then (M) is virtually compact special, and therefore is virtually
RFRS. The RFRS property will be discussed in Section 2.4, though for now we men-
tion that a finitely generated group is RFRS if and only if it is residually (poly-Z and
virtually Abelian).



1.1 Algebraic fibring

Recently, Kielak established a group-theoretic generalisation of Agol’s fibring criterion
[Kie20b|. Before stating it, we briefly discuss algebraic fibrations and L?-invariants. A
group G algebraically fibres if it admits an epimorphism G — 7Z with finitely generated
kernel. The terminology is motivated from topology: if a compact aspherical space
X decomposes as a fibre bundle over S*, then the induced map m (X) — m(S') 2 Z
is an algebraic fibration. The L?-Betti numbers are numerical homological invariants
that have proven to be powerful tools in topology and in the theory of infinite groups.
The L?-Betti numbers of a RFRS groups can be calculated as follows: if G is RFRS,
then it follows from work of Schick [Sch02]| that the group algebra Q[G] embeds into
a division ring Dgjg called the Linnell division ring of G. The homology module
H,(G; Dgjg) is a module over Dy and therefore has a well defined dimension,
which is the nth L?-Betti number of G, denoted by bg)(G). Thanks to the work of
[Liic02, Theorem 7.2], it has long been known that the non-vanishing of ng)(G) is an
obstruction to GG virtually algebraically fibring. Kielak’s theorem provides a converse

in the realm of RFRS groups.

Theorem 1.1.1 ([Kie20b, Theorem 5.3|). If G is a non-trivial finitely generated
RFERS group, then G virtually algebraically fibres if and only if bgz)(G) = 0.

In [Sta62|, Stallings shows that if M is a 3-manifold for which there exists an
algebraic fibration m (M) — Z, then this algebraic fibration is induced by a fibration
of M over S (the original statement of his result had some assumptions that can now
be dropped thanks to geometrisation). Moreover, from [LL95| (see also Example A.8),
bf) (m1(M)) = —x(M) for an aspherical, irreducible 3-manifold M. Thus, Kielak’s
theorem is an honest generalisation of Agol’s fibring criterion.

The first main result of this thesis is a higher-degree generalisation of Theo-
rem 1.1.1. By a theorem of Gaboriau |Gab02, Théoréme 6.6], if G is a countable
group such that there is an extension 1 — K — G — @ — 1 with @ infinite
amenable and bg)(K ) < oo for some n > 0, then bg)(G) = 0. Recall that a group
G is of type FP,(R) for some ring R if the trivial R[G]-module R admits a partial
resolution of length n by finitely generated projective R[G]-modules; this is a homo-
logical analogue of admitting a classifying space with finite n-skeleton. An essentially
immediate consequence of Gaboriau’s theorem (or [Liic02, Theorem 7.2]) is that if G
admits a virtual algebraic fibration with kernel K of type FP,(Q), then bl(-Q)(G) =0
for all ¢« < n. For the class of RFRS groups, we have the following converse, which

will be proved in Theorem 3.2.3.



Theorem 1.1.2. Let G be a RFRS group of type FP,(Q). There exists a finite-index
subgroup H < G and an epimorphism H — 7 with kernel of type FP,(Q) if and only
if B2(G) =0 for all i < n.

Note that a group is of type FP1(Q) if and only if it is finitely generated, so
Theorem 1.1.2 reduces to Theorem 1.1.1 in the case n = 1. We now discuss some
applications of Theorem 1.1.2. An obvious question raised by Thurston’s Virtual
Fibring Conjecture is whether higher-dimensional hyperbolic manifolds virtually fibre
over S'. In even dimensions this can never be the case: the Chern-Gauss-Bonnet
Theorem implies that even-dimensional hyperbolic manifolds have non-zero Euler
characteristic, but the Euler characteristic of any virtually fibred manifold is zero.
Thus, the question is only interesting in odd dimensions, and until recently there was
no evidence in favour or against a higher-dimensional analogue of the Virtual Fibring
Conjecture being true. In [IMM23], Italiano, Martelli, and Migliorini constructed
the first example of a finite-volume, cusped, hyperbolic 5-manifold that fibres over
the circle, providing the first piece of evidence towards the conjecture. In the other
direction, in [AOS24| Avramidi, Okun, and Schreve build a negatively curved (but
not hyperbolic) closed 7-manifold that does not virtually fibre over S'. Note that the
manifolds in [IMM23] and [AOS24| have virtually RFRS fundamental groups.

As a consequence of Theorem 1.1.2, together with the fact that hyperbolic mani-
folds have their L2-Betti numbers concentrated in the middle dimension [Dod79], we

give the following evidence towards a higher-dimensional Virtual Fibring Conjecture.

Corollary 1.1.3. Let M be an odd-dimensional hyperbolic manifold such that m (M)
is virtually RFRS. Then m (M) virtually algebraically fibres with kernel of type FP(Q).

In [BHW11]|, Bergeron, Haglund, and Wise show that lattices of simple type (see
their paper for a definition) in SO(n, 1) act geometrically on CAT(0) cube complexes,
and therefore the uniform such lattices are virtually RFRS by [Ago13|. This provides
a rich source of examples of manifolds satisfying the assumption of the previous

corollary.

Corollary 1.1.4. If n is odd and I' < SO(n,1) is a uniform lattice of simple type,
then T virtually algebraically fibres with kernel of type FP(Q).

Remark 1.1.5. In [Kud23|, Kudlinska shows that the type FP(Q) kernels appearing
in the corollary above are not hyperbolic, giving examples of hyperbolic groups of all
odd cohomological dimensions containing non-hyperbolic subgroups of type FP(Q).
Note that an important consequence of [IMM23] is that there exists a hyperbolic
group with a non-hyperbolic subgroup of finite type.
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As remarked by Llosa-Isenrich, Martelli, and Py in [IMP24, Proposition 19|, if T is
a uniform lattice of simple type in SO(n, 1) for n even, then I" virtually algebraically
fibres with kernel of type FPx»_;(Q) but not of type FP»(Q), giving a homological
solution to a question of Brady about the existence of such subgroups of hyperbolic
groups [Bra99|. In fact, every lattice in SO(n, 1) is of simple type when n is even (see
[KPV08, Remark 2.1]), so we obtain the following corollary.

Corollary 1.1.6. If n is even, then every uniform lattice in SO(n,1) contains a
subgroup of type FPx_1(Q) but not of type FP=(Q).

Brady’s question was completely answered by Llosa-Isenrich and Py who gave
examples of subgroups of hyperbolic groups that are of type F,,_; but not F,, for all
n > 1 |LP24] (recall that a group is of type F,, if it admits a classifying space with
finite n-skeleton), though it is still not known whether the subgroups appearing in

Corollary 1.1.6 are of type Fz_.

1.1.1 Positive characteristic analogues of L?-Betti numbers

There are different ways to define L2-invariants over fields which are not subfields of
C. This is often done via Liick Approximation: in [Liic94|, Liick showed that if G is
a residually finite group of type FP,;1(Q), then

o -2

for any residual chain of finite-index normal subgroups G = Gy > G; > ... and for

all 7+ < n. By replacing Q with an arbitrary field k£ in the above limit, one would hope

to obtain a new invariant bZ@)(G; k), however the limit of the sequence bE(GGék]“')
i)

known to exist in general, nor whether the limit should depend on the chosen residual

1S not

chain in the cases where it does exist (see [AOS21, BK17] for interesting cases where
the answers to these questions are known). One way around this is to simply define
the k-L?-Betti numbers of a group G of type FP, (k) by

2) /. . bi(HSk)
G = it T

for ¢+ < n.

By a combination of results of Jaikin-Zapirain [JZ21| and [LLS11, Theorem 0.2],
this definition agrees with a more algebraic definition of k-L?-Betti numbers in the
case of RFRS groups. Recall that if G is a RFRS group, then Q[G] embeds into

a division ring Dgig) and the L?-Betti numbers of G are the Dgjg-dimensions of

4



the homology modules H;(G;Dgg)). By [JZ21, Corollary 1.3], if G is RFRS then
any group algebra k[G] embeds into a division ring Dy that shares many formal
properties with Dgjg (see Section 2.3). More precisely, Dy is Hughes-free and
universal as a division k[G]-ring. One then defines the k-L2-Betti numbers of a RFRS
group by
b* (G k) = dimp,, Hi(G; Dyiey).
The ground field k£ plays no role in our arguments, and we obtain the following

more general version of Theorem 1.1.2.

Theorem 1.1.7. Let G be a RFRS group of type FP, (k) for some field k. There
exists a finite-index subgroup H < G and an epimorphism H — 7 with kernel of type
FP,(k) if and only if B (G; k) = 0 for all i < n.

1.2 Cohomological dimension of normal subgroups

Gaboriau’s theorem [Gab02, Théoréme 6.6] discussed in the previous section also
implies that L2-Betti numbers obstruct the existence of low-dimensional normal sub-
groups N < G such that G/N is amenable. More precisely, if cdg(N) < n, then
b§2)(N) = 0 for all i > n and consequently bZ@)(G) = 0 for all i > n. In Chapter 4,

we will give partial converses to this statement. We first state a special case of the

result which we believe is of the most interest.

Theorem 1.2.1. Let G be a finitely generated RFRS group of cohomological dimen-
sion at most two. Then G s virtually free-by-cyclic if and only if bg)(G) = 0.

This generalises and gives a new proof of a theorem of Kielak and Linton [KL24],
which has the additional assumptions that G be hyperbolic and virtually compact
special. Note however, that Kielak and Linton prove that G is virtually a subgroup
of a (finitely generated free)-by-cyclic group, while this does not follow from Theo-
rem 1.2.1.

By a celebrated theorem of Feighn and Handel [FH99|, free-by-cyclic groups are
coherent, meaning that all their finitely generated subgroups are finitely presented.
In [Bau74|, Baumslag raised the problem as to whether all one-relator groups are
coherent, and in [Bau86, Problem 6|, he conjectured that in fact one-relator groups
with torsion are virtually free-by-cyclic. More generally, Wise conjectures that hyper-
bolic one-relator groups are virtually free-by-cyclic [Wis20a, Conjecture 17.8]. There
has been much recent progress in our understanding of all these conjectures. Jaikin-

Zapirain and Linton [JZ17| proved that one-relator groups are coherent. Moreover,
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all one-relator groups have vanishing second L?-Betti number by [DL07], and since
one-relator groups with torsion are hyperbolic [New68| and virtually compact spe-
cial [Wis21, Corollary 19.2|, Kielak and Linton’s result mentioned above implies that
they are virtually free-by-cyclic. An immediate corollary of Theorem 1.2.1 is that
any virtually RFRS one-relator group is virtually free-by-cyclic. It is likely the case
that hyperbolic one-relator groups are virtually special, which would resolve Wise’s
conjecture, but this is not yet known to be the case.

In [Wis20b|, Wise proves that if X is a compact two-complex with RFRS funda-
mental group, then b{” ()A(/ ) < be(X). This was subsequently strengthened by Jaikin-
Zapirain, who proved the same inequality for higher L*-Betti numbers [JZ21, Corol-
lary 1.6]; we will also prove a variant of this results in Lemma 4.3.13 which relaxes
the assumption that X be compact. As a consequence of Theorem 1.2.1, we obtain

the following corollary which solves a problem of Wise [Wis20b, Problem 6.5].

Corollary 1.2.2. Let G be a finitely generated RFRS group of cohomological dimen-
sion at most two. If by(G) = 0, then G is virtually free-by-cyclic.

Note that Hagen and Wise [HW10a| show that if G is a graph of free groups
with cyclic edge groups or a limit group and G is hyperbolic relative to virtually Z>
subgroups, then G is virtually free-by-cyclic. More generally, they show that any
special group with an elementary hierarchy is virtually free-by-cyclic (we refer the
reader to their paper for a definition). Theorem 1.2.1 gives a new proof of these facts.

We now state a more general result that applies in all finite cohomological di-
mensions and to a class of groups larger than RFRS groups. Recall that the class of
finitely generated RFRS groups coincides with the class of residually (poly-Z and vir-
tually Abelian groups). We now drop the virtually Abelian assumption and consider
the class of residually poly-Z groups. The following result was obtained in joint work
with Sénchez-Peralta and generalises the previous work of the author with Klinge
[FK24]|, where the assumption that G' be residually (poly-Z and virtually nilpotent)

was needed.

Theorem 1.2.3. Let k be a field and let G be a residually poly-Z group of type FP (k).
Let n = cdi(G). The following are equivalent:
(1) in every residual normal chain G = Gy = Gy > ... such that G/G; is poly-Z,
cdi(G;) < n for all sufficiently large integers i;
(2) b2(Gk) = 0.



Note that we do not need to pass to a finite-index subgroup in the conclusion
of this theorem, as opposed to in Theorem 1.2.1. The finiteness assumption can be
relaxed in two different ways. The arguments actually show that the conclusion of
Theorem 1.2.3 holds when the trivial k[G]-module k& admits a projective resolution
of length n such that the top-dimensional module is finitely generated. It also fol-
lows from the arguments of Jaikin-Zapirain and Linton [JZL23] that if G satisfies
bg)(G; k) =0, is of type FP,,_1(k), and cdx(G) = n, then in fact G is of type FP(k);
this is the reason why we only require G to be finitely generated in Theorem 1.2.1,
otherwise the assumption that G be of type FP5(Q) would be needed.

Returning to two-dimensional groups, the theorem of Stallings and Swan [Sta68,
Swab9|, together with Theorem 1.2.3, implies the following corollary. We say that a
ring is coherent if all of its one-sided ideals are finitely presented. While this clashes
with usual terminology, we deem it appropriate here since group algebras are left
coherent (meaning all their finitely generated left ideals are finitely presented) if and

only if they are right coherent.

Corollary 1.2.4. Let G be a finitely generated residually poly-Z group of cohomo-
logical dimension at most two. Then G is free-by-(poly-Z) if and only if b§2)(G) =0.
In particular, if G is residually poly-Z, of cohomological dimension at most 2, and
béQ)(G) =0, then G is coherent and the group algebra k[G] is coherent for any field k.

The fact that free-by-(poly-Z) groups of cohomological dimension two are coherent
and have coherent group algebras follows easily from the arguments in [JZ1.23| (see
Corollary 4.3.11 for a proof).

Corollary 1.2.4 fits into a conjectural classification of two dimensional coherent
groups, proposed by Gromov and Wise (see |[Wis20a, Wis22a, Wis22b|). A map
Y — X between 2-complexes X and Y is a combinatorial immersion if it is cellular
and is injective on the link of each vertex. A 2-complex X has non-positive immersions

if for every combinatorial immersion Y — X, either Y is contractible or x(Y') < 0.

Conjecture 1.2.5. Let G be a group of geometric dimension at most two. The
following are equivalent:

(1) G is coherent;

(2) b5(G) = 0;

(3) G = m(X) for a 2-complex X with non-positive immersions.

Corollary 1.2.4 shows that item (2) implies item (1) in the class of residually poly-
Z groups. Theorem 1.2.1 shows that the implication (2) = (3) holds virtually in the



class of RFRS groups, i.e. if b;Q)(G) = 0 for a two-dimensional RFRS group G, then
there is a finite-index subgroup H < G such that H is the fundamental group of a
2-complex with non-positive immersions. This is because the standard presentation
complex of a free-by-cyclic group (more generally, of an ascending HNN extension
of a free group) has non-positive immersions by [Wis22a, Theorem 6.1]. While no
implication is known in general, Jaikin-Zapirain and Linton [JZL23] show that if
G is a group of cohomological dimension at most two satisfying the Strong Atiyah
Conjecture and ng)(G) = 0, then G is homologically coherent, meaning that the
finitely generated subgroups of G are of type FP4(Z). They are also able to promote
the homological coherence property to full coherence in many cases of interest, such
as that of one-relator groups (see [JZL23, Section 4]). There is much less evidence
for either of the implications (1) = (2) or (1) = (3), and it seems less likely that
these would hold in general (this is also Wise’s view). In fact, the group PSLQ(Z[%])
is a potential counterexample; whether it is coherent is a well-known open problem

of Serre’s, while it is known that it has non-vanishing second L2-Betti number.

1.2.1 Parafree groups

We conclude this section with a short discussion on parafree groups and the Parafree
Conjecture. A group G is parafree if G is residually nilpotent and there exists a free
group F' such that G/v,(G) = F/~,(F) for all n, where v,(G) denotes thee nth term
of the lower central series of G. There are many examples of finitely generated non-
free parafree groups G [Bau67|. The main open problem in the subject is Baumslag’s
Parafree Conjecture, which predicts that Hy(G;Z) = 0 for every finitely generated
parafree group G. The additional prediction that Hy(G;Z) = 0 and cd(G) < 2
is sometimes called the Strong Parafree Conjecture; both versions are open. An-
other important question about finitely generated parafree groups is whether they
are finitely presented, and it is even unknown whether they are coherent. Note that
it is known that finite presentability is not a pronilpotent invariant by a result of Brid-
son and Reid [BR15, Theorem A]. Using Corollary 1.2.4, we draw a relation between

these questions.

Corollary 1.2.6. Let G be a finitely generated parafree group with ¢cd(G) < 2. The
following are equivalent:

(1) G satisfies the Parafree Conjecture;

(2) G is free-by-(free nilpotent);

(3) the terms of the lower central series of G are eventually free.



Hence, if G satisfies the Parafree Conjecture, then G is coherent, and in particular

finitely presented.

Recall that a free nilpotent group is any quotient of a free group F' by some term

Yn(F') of its lower central series.

1.3 Constructing division rings

The results discussed above all rely on the existence of embeddings of the group
algebra into a suitable division ring, and it is thus of interest to extend the list of
groups whose group algebras admit embeddings into division rings. Note that if k[G]
embeds into a division ring, then k[G] has no zero divisors, so embeddability into a

division ring implies Kaplansky’s famous Zero Divisor Conjecture.

Conjecture 1.3.1 (The Zero Divisor Conjecture). Let G be a torsion-free group and
let k be a field. Then k|G| has no zero divisors.

The assumption that G is torsion-free is easily seen to be necessary, and therefore
it will also be necessary for k[G] to embed into a division ring. Somewhat surprisingly,

the following a priori stronger conjecture remains open.

Conjecture 1.3.2. Let G be a torsion-free group and let k be a field. Then k|G|

embeds into a division ring.

An even stronger version of this was conjectured in [JZL23, Conjecture 1|. Con-
jecture 1.3.2 is related to Malcev’s Problem, which asks whether group algebras of
left-orderable groups embed into division rings. This was motivated by Malcev and
Neumann’s independent constructions of division rings containing the group algebras
of bi-orderable groups [Mal48, Neud9|. Other notable classes of groups satisfying
the conclusion of Conjecture 1.3.2 include torsion-free elementary amenable groups
[KLMS88] and locally indicable groups (when k is of characteristic zero) [JZLA20].

In the final chapter of this thesis, we extend the list of groups with group algebras
embedding into division rings. This result was obtained jointly with Sanchez-Peralta
in [FSP23].

Theorem 1.3.3. If M s a 3-manifold with torsion-free fundamental group and k is
a field, then k[m(M)] embeds into a division ring.

As a corollary, we deduce the Zero Divisor Conjecture in the class of 3-manifold

groups.



Corollary 1.3.4. If M is a 3-manifold with torsion-free fundamental group and k is
a field, then k[m(M)] has no zero divisors.

We remark that Theorem 1.3.3 and Corollary 1.3.4 hold when the group algebra
is replaced by any twisted group algebra k x 7y (M) for any division ring k. When
k = C, both results follow from the resolution of the Strong Atiyah Conjecture for
3-manifold groups [FL19, KL.24|. The Zero Divisor Conjecture for the rational group
ring Q[G] of a 3-manifold group G was raised in [AFW15, Question 7.2.6(6)].

The proof of these results uses a mix of classical 3-dimensional topology, including
the Prime and JSJ Decomposition Theorems, recent advances in the study of 3-
manifolds, such as the resolution of the Virtual Fibring Conjecture, and the theory of
coproducts and HNN extensions of rings developed by Cohn, Bergmann, and Dicks
[Ber74, Coh06, Dic83]. We take special care to state the classical results in such a
way that we do not need to assume that the 3-manifold M is orientable. Indeed,
it is not sufficient to prove the results in the orientable case, since it is not known
whether the Zero Divisor Conjecture nor Conjecture 1.3.2 are stable under passage
to an overgroup of index two.

Along the way, we will prove that group algebras of torsion-free virtually com-
pact special groups admit Linnell embeddings into division rings (see Definition 2.3.7
and Theorem 5.2.4), building on arguments of [LS07| and [Sch14]. This confirms
a conjecture of Kielak and Linton |[KL24, Conjecture 6.8]. The existence of Lin-
nell embeddings of virtually compact special groups is a crucial step in establishing
Theorem 1.3.3.

1.4 Organisation of the thesis

In Chapter 2, we introduce the preliminary material that will be used throughout
the thesis. Many of the concepts that were not fully defined in the introduction are
covered in more detail there. In Chapter 3, we prove Theorems 1.1.2 and 1.1.7 and
discuss some applications of these results. In Chapter 4, we begin by giving a very
short proof of Theorem 1.2.1, and then proceed to prove Theorem 1.2.3. Finally,
in Chapter 5, we prove Theorem 1.3.3. The key tool in this section is the graph of
rings construction, which is developed in Section 5.1. Two appendices are included
at the end of the thesis. In Appendix A, we compute the k-L2-Betti numbers of var-
ious locally indicable groups admitting embeddings into division rings. Appendix B

contains a list of questions and conjectures related to the thesis.
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Chapter 2

Preliminaries

2.1 Twisted group rings

Given a ring R and a group G, we can always form the group ring R[G], whose
underlying set consists of finite formal sums of elements of G with coefficients in R.
We will also need the more general notion of a twisted group ring, which we now define.
A ring S is G-graded if its underlying additive group decomposes as S = € gec g and
SgSh C Sgn, for all g, h € G. If, additionally, there are distinguished units s, € S, for
each g € GG, then we say that S is a twisted group ring of S, and GG, and denote it by
Se * G. By abuse of notation, we will often denote the distinguished unit s, € S, by
g. Thus, elements of a twisted group ring S, * G will be written as finitely supported
formal sums ) e Agg, where A\, € S.. Twisted group rings arise naturally and

frequently, as the following example shows.
Example 2.1. Let R be a ring and GG be a group. If N < G is a normal subgroup,
then R[G] is isomorphic to a twisted group ring R[N] x G/N.

2.2 Group homology and finiteness conditions

All of the material presented in this section is standard and can be found in [Bie81]
or [Bro94|.
Throughout the section, R denotes a unital, associative ring with 1 # 0. A

resolution of a left R-module M is an exact sequence
-—-P,—-P,_41 - =P > F—M-—0,

where each P, is an R-module and the maps are module homomorphisms. We can

similarly define resolutions of right R-modules. For conciseness, we will use the nota-
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tion P, — M to denote a resolution of this form. If P is a property of modules, then

P, — M is a P-resolution if all the modules P, have the property P.

Definition 2.2.1 (Module finiteness properties). The R-module M is of type FP,
if there is a projective resolution P, — M such that P; is finitely generated for all
1 < n. If there exists such a projective resolution such that all the modules P; are
finitely generated, then M is of type FP.. If, moreover, the resolution can be chosen

so that only finitely many of the modules P; are nonzero, then M is of type FP.

If G is a group and R is a ring, then R can viewed as an R[G]-module by making
G act trivially. We call R the trivial R[G]-module.

Definition 2.2.2 (Group finiteness properties). The group G is of type FP,(R)
(resp. type FPo(R), resp. type FP(R)) if the trivial R[G]-module R is of type FP,
(resp. FP, resp. FP).

A group is of type FP;(R) for some (and hence every) ring R if and only if it is
finitely generated [Bie81, Proposition 2.1]. If G has a classifying space with finite n-
skeleton, then it is of type FP,(R) for all rings R, and similarly for the other finiteness
conditions. If S is an R-algebra, then type FP, (R) implies type FP,(S) for all n,
and similarly for the other finiteness properties. Since every ring is a Z-algebra, this
implies that FP,(Z) implies FP,(R) for all rings R. We say that G is of finite type if

G admits a finite classifying space.

Definition 2.2.3 (The functors Tor and Ext). Let M and N be right and left R-
modules, respectively. The functors Tor®(—, N) are the derived functors of — ®p N.
This means that Torﬁ (M, N) is calculated by taking a projective resolution P, — M
and computing the degree n homology of the chain complex P, ®r N; the result is
independent of the chosen resolution.

Now suppose that M and N are both left R-modules. The functors Ext,(—, N)
are the derived functors of Hompg(—, N). This mean that Ext?(M, N) is calculated
by taking a projective resolution P, — M and computing the degree n cohomology
of the cochain complex Homg(P,, N). Again, the result is independent of the chosen

resolution.

Note that Tor®(M, N) can also be calculated as the derived functor of M ®p —,

a fact which we will occasionally use without mention.
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Definition 2.2.4 (Group (co)homology). Let G be a group, R be a ring, and M be
a left R[G]-module. The degree n homology of G with coefficients in M is

H,(G; M) := TorflE(R, M).
The degree n cohomology of G with coefficients in M is
H"(G; M) = Extpg (R, M).
The length of a projective resolution P, — M is sup{n : P, # 0}.

Definition 2.2.5 (Cohomological dimension). The cohomological dimension of a
group G over a ring R is the minimal length of a projective resolution of the trivial
R[G]-module R. It is denoted by cdg(G). If all resolutions of R are of infinite length,
then cdr(G) = co. Equivalently, cdg(G) is the maximal n such that there exists an
R-module M with H"(G; M) # 0.

2.3 Division rings

Throughout the text, we will make use of various constructions of division rings, which
we overview here. All rings are assumed to be unital and associative with 1 # 0 and

ring homomorphisms preserve the unit.

2.3.1 Ore localisation

Definition 2.3.1 (Ore domains). Let R be a ring and let S = R~ {0}. If Ris a
domain, then R is a right Ore domain if sRNrS # @ for all pairs (r,s) € R x S.

Given a right Ore domain R, we can form its Ore localisation Ore(R) as follows.
Continuing with the notation S = R ~\ {0}, define an equivalence relation on R x S
by (r,s) ~ (1, ¢") if and only if there are elements o,0’ € S such that ro = 1’¢’ and
so = s'a’. We denote the equivalence class of (r,s) under ~ by r/s, and we call the
equivalence classes right fractions. Let r1/s; and r3/sy be right fractions. Since R is
a right Ore domain, there are elements 0,0’ € S such that s;0 = sy0’. We can then

define the sum of 71 /s; and 75/s9 by
r1/81 4 1ro/sy = (r10+10’)/s10.

Similarly, there are elements 7,7/ € S such that s;7 = ry7’, which we can use to

define the multiplication of 71 /s, and r9/se by

(r1/s1) - (ra/s2) = (7“17)/(327/)~
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It is an arduous and tedious task to check that the definitions of addition and mul-
tiplication do not depend on the right fraction representatives and that they define
a ring structure on Ore(R). Even once one has established that the definitions are
well defined, it is not trivial to show that addition is commutative. Once this is done

however, it is easy to see the following.

Proposition 2.3.2. Let R be a right Ore domain. Then Ore(R) is a division ring

and the map v: R — Ore(R), r — r/1 is a ring monomorphism.

Ore localisation also satisfies the following universal property, which is analogous
to the universal property of localisation of commutative rings. We use D* to denote

the set of units in a ring D.

Proposition 2.3.3. Let R be an Ore domain and let f: R — D be a ring homomor-
phism satisfying f(S) C D*. There is a unique extension f: Ore(R) — D satisfying
f=Tou.

A left Ore domain is a domain R where Rs N Sr # @ for all (r,s) € R x S (again,
S = R~ {0}). Since we will only be interested in the case where R is a (twisted)
group ring, and in this case R is a left Ore domain if and only if it is a right Ore
domain, this distinction is not important for us. The universal property ensures that
the left and right Ore localisations are isomorphic rings. For more details on Ore
domains and the more general Ore condition, we refer the reader to [Pas77, Section

4.4]. We will make frequent use (often without mention) of the following result.

Theorem 2.3.4 (|[KLMS88, Theorem 1.4|). Let k be a division ring and let G be a
torsion-free elementary amenable group. Then all twisted group rings k x G are Ore

domains.

2.3.2 Malcev—-Neumann power series

A group G is orderable if there is a total order < on G such that g; < g, if and only
if tg1 < tge if and only if gt < got for all elements g1, go,t € G. If G is orderable and
< is a fixed order on G, we refer to the pair (G, <) as an ordered group (often we will

just say that G is ordered when < is implicit).

Definition 2.3.5 (The Malcev-Neumann power series ring). Let R % G be a twisted
group ring of an ordered group (G, <) and a ring R. The Malcev—Neumann power

series ring associated to R * G and < is the ring with underlying set

Rx.G = {x = ngg : 74 € R and supp(z) is well ordered} :

geG
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Addition and multiplication in R % G are well defined and naturally extend the cor-

responding operations in R x G.

The following theorem of Malcev and Neumann gives many examples of group

rings embedding into division rings.

Theorem 2.3.6 (|Mal48, Neud9|). Let k x G be a twisted group ring of an ordered

group G and division ring k. Then k x. G is a division ring.

2.3.3 Linnell and Hughes-free division rings

In this subsection, we fix the following notation. Let k * G be a twisted group ring of
a group G and a division ring k, and suppose there is an embedding ¢: k x G — D,
where D is a division ring. Note that ¢ gives D the structure of a k *x G bi-module. If

H < G is a subgroup, we denote the division closure of ¢(k *x H) in D by Dy.

Definition 2.3.7 (Linnell division rings). The embedding ¢ is Linnell if D = Dg and

the multiplication map
Dy Qg (k+xG) =D, a®x— a-i(z)

is injective for all subgroups H < G. In this situation, we say that D is a Linnell

division ring for k x G.

If ¢ is Linnell, then it follows that the restriction k * H — Dy is Linnell for every
subgroup H < G. There is also the following, a priori weaker, type of embedding that
is very useful. Recall that a group G is locally indicable if every non-trivial finitely

generated subgroup H < G admits an epimorphism to Z.

Definition 2.3.8. If (G is locally indicable, then the embedding ¢ above is Hughes-free
if D = D¢ and the multiplication map

Dy ®psn (kx H) — D

is injective for all pairs of subgroups N << H of G such that H is finitely generated
and H/N = Z. In this situation, we say that D is a Hughes-free division ring for
kx*G.

Hughes-free embeddings are particularly useful because of the following result of

Hughes.
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Theorem 2.3.9 ([Hug70|). If G is locally indicable and k * G has a Hughes-free

division ring, then it is unique up to isomorphism of k x G-algebras.

In view of this result, if a Hughes-free embedding exists, then we denote it by
Dir«c- Then k x H has a Hughes-free embedding for every subgroup H < G and

Drvrg € Diyq. The following recent result of Grater will be useful.
Theorem 2.3.10 (|Gra20, Corollary 8.3]). Hughes-free division rings are Linnell.
An immediate consequence of this result and Theorem 2.3.4 is the following.

Corollary 2.3.11. Suppose that G is locally indicable and Dy.q exists.
(i) If N < G is a normal subgroup such that G/N is torsion-free and elementary
amenable, then Dy = Ore(Dy.n * G/N).
(ii) If N < G is a normal subgroup of finite-index, then Dy.g = Dr«n * G/N.

Implicit in the above statement is the fact that the twisted group ring structure
(kxN)+G /N extends to Dy, n*G /N, which follows from the uniqueness of Hughes-free
division rings (see [Hug70, p. 183|). Note that it is not known whether Linnell division
rings are unique when they exist, which is the reason why Hughes-free division rings

of locally indicable groups will play a more central role.

2.3.4 The category of R-division rings and specialisations

Let R be a ring. An R-division ring is a homomorphism ¢: R — D, where D is a
division ring and the image ¢(R) generates D as a division ring. We will often, by

abuse of notation, use D to denote the R-division ring ¢: R — D.

Definition 2.3.12 (Specialisations). A specialisation from an R-division ring D; to
an R-division ring D, is a homomorphism p: D — Dy, where D C D is a local

subring of D; containing the image of R, the maximal ideal of D is ker p, and the

R
N
D, +—— D —25 D,

diagram

commutes.

We will denote the specialisation by p: D; — Ds, even though p is not a map with
domain D; in general. If there are specialisations p;: Dy — Dy and py: Dy — Dy,

then we may take the domain of p; to be all of D; (i = 1,2), which forces the maps p;
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to be inverse to each other. Hence, we may define a partial order on the isomorphism
classes of R-division rings by declaring D, > D, if and only if there is a specialisation
Dy — Ds.

There is another partial order on the isomorphism classes of R-division rings that
we can define as follows. Given an R-division ring ¢: R — D and a matrix M with
coefficients in R, applying ¢ to the entries of M yields a matrix M¥ with coefficients
in D. Define the p-rank of M to be the number of D-linearly independent columns in
M. We denote this quantity by rkp (M), since the map ¢ will always be understood.
In this way, an R-division ring D determines a function rkp: Mat(R) — Zs(, where
Mat(R) denotes the set of all finite matrices over R, and we obtain a new poset
on the isomorphism classes of R-division rings by declaring D; >’ D, if and only
if rkp, (M) > rkp,(M) for all matrices M with coefficients over R. A theorem of

Malcolmson states that the two posets we have introduced are isomorphic.

Theorem 2.3.13 (|[Mal80, Theorem 2|). If Dy, Dy are R-division rings, then Dy = Dy
if and only if Dy =' Do. In other words, there is a specialisation Dy — Dy if and only

if the induced rank functions satisfy rkp, = rkp,.

An R-division ring D is universal if D > D’ for all other R-division rings D’. The
following result of Jaikin-Zapirain gives many examples of universal k[G]-division

rings, and will be used throughout the thesis.

Theorem 2.3.14 ([JZ21, Corollary 1.3]). Let G be a residually (locally indicable and
amenable) group and let k be a division ring. Then the Hughes-free division ring Dyq

exists and is universal.

2.4 RFRS groups

Definition 2.4.1 (RFRS). A group G is residually finite rationally solvable (RFRS)
if there is a residual chain of finite-index subgroups G = Gog > G; > G5 > ... such
that ker(G; — Q ® G;/[G;, G;]) < Giyq for all i > 0. We refer to a chain of this type

as a witnessing chain.

The class of RFRS groups was introduced by Agol in connection with Thurston’s
Virtual Fibring Conjecture for 3-manifolds [Ago08|, where he showed that a finite-
volume hyperbolic 3-manifold has a finite degree cover that fibres over St if (M) is

virtually RFRS. Since then, RFRS groups have occupied a central role in geometric
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group theory, and there are now many examples of RFRS groups. For example, right-
angled Artin groups are known to be RFRS, and it is clear that the RFRS property
passes to subgroups. Hence, all special groups (in the sense of Haglund—Wise [HWO08])
are RFRS.

Recently, Kielak, Okun, Schreve, and the author obtained a characterisation of
the RFRS property in terms of an easy-to-parse residual property [0S24, Theorem
6.3]. We repeat the argument here. Recall that a group G is poly-Z if there is a
subnormal series {1} = G, < --- < G; < Gy = G such that G;/G;11 = 7Z for each

relevant index 7.

Theorem 2.4.2. A finitely generated group G is RFRS if and only if G is residually
(poly-Z and virtually Abelian).

Proof. Assume first that G is RFRS and let G = Gq > G; > ... be a witnessing
chain. Moreover, let Ny = G and N;41 = ker(G; — Hi(G;Q)) for all ¢ > 1. Then
N;/N;y1 < G;/N;4q is free Abelian of finite rank, which implies that G /N, is poly-Z
for all i. Moreover, G;/N;,1 is free Abelian, and therefore G/N;,; is poly-Z virtually
Abelian.

Conversely, assume that G is residually (poly-Z virtually Abelian). The result

will follow quickly from the two following claims.

Claim 2.4.3. If G is poly-Z virtually Abelian, then G is RFRS.

Proof. We prove the claim by induction on the poly-Z length of G. The base case is
trivial, so we assume there are n > 1 cyclic factors. Then G fits into an extension
1—- P — G — 7Z — 1, where P is RFRS by induction. Let P = Py > P, > ...
be a witnessing chain for the RFRS property, and assume that each subgroup F; is
characteristic, which can be done by passing to normal cores. Since G is virtually
Abelian, there is an integer m; > 1 such that n1Z < Z acts trivially on the free
Abelianisation P™. Let Gy = P x n,Z, and note that ker(G — G™) < G.

There is some ny > n; such that nyZ < nyZ acts trivially on Plfab, and we set
G9 = P, x nyZ. Note that

ker(G; — G*P) = ker(P — P™) < P, < G,

since (P;);>0 is a witnessing chain. Continuing in this way, we obtain a chain of
finite-index subgroups G > G; > Go > ..., where G; = P,_; x n;Z for some strictly
increasing sequence of integers n; such that n;,Z acts trivially on P25 The chain

satisfies the condition ker(G; — GP) < Gy, and it is clearly residual. Thus, G is
RFRS. o
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Claim 2.4.4. If G,, is a RFRS group for every n € N, then [[, G, is RFRS.

Proof. For eachn € N, let G,, = G%O) > GS) > ... be a residual chain witnessing the
RFRS property. Then the groups

G =G x Gl x - x G x GW X Gy X Grgo X -+
are of finite index in [], G, and GW > G® > . is a witnessing chain. o

Since G is finitely generated and residually (poly-Z virtually Abelian), it follows
that G embeds into a countable product ], G of poly-Z virtually Abelian groups
G;, which is RFRS by the two claims above. Since the RFRS property passes to
subgroups, G is RFRS. n

It is well known that nilpotence and the RFRS condition are incompatible, in the
sense that the only nilpotent RFRS groups are Abelian. We give an easy proof of
the following more general fact. A different proof was originally communicated to the

author by Sami Douba, and appears in [Fis24a, Theorem 7.4].

Corollary 2.4.5. If G is polycyclic and RFRS, then G is virtually Abelian. In par-
ticular, if G is nilpotent and RFRS, then G is Abelian.

Proof. By passing to a finite-index subgroup, we may assume that G is poly-Z. Let
G = Ny > N1 > ... be a residual normal chain such that G/N; is non-trivial poly-Z
virtually Abelian for each ¢. Then cdz(N;+1) < cdz(V;) for each i and thus N; is
trivial for sufficiently large i. Hence, G is virtually Abelian.

Now suppose G is nilpotent and RFRS. It suffices to prove the claim when G
is finitely generated, in which case G is polycyclic. By the previous paragraph, G is

virtually Abelian. But a virtually Abelian torsion-free nilpotent group is Abelian. [

Note that Z{Z is an example of a solvable RFRS group, so the corollary does not
extend to the class of solvable groups. We will prove, however, that amenable RFRS

groups of finite type must be virtually Abelian (see Corollary 3.2.4).

2.5 L2-Betti numbers

In this section, we give the algebraic perspective on L2-Betti numbers that will be used
throughout the thesis. One advantage of this point of view is that it is independent of
the characteristic of the ground field, while the classical L?-theory requires that one

work over a subfield of C. The downside is a loss of generality, since L?-Betti numbers
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can be defined for any group, while the version of the theory we are using only works
for groups G such that k[G] admits a Hughes-free embedding. For a treatment of the
classical theory of L2-invariants, the reader is referred to |Liic02] and [Kam19].

Let G be a locally indicable group and k a field such that there is a Linnell
embedding k[G]| — Dy

Definition 2.5.1 (k-L2-Betti numbers). The k-L?*-homology of G in degree n is
HP(G;k) = H,(G; Dyay).

Then HP(G; k) is a Dyjg-module, and therefore it has a well-defined dimension. We
thus define the nth k-L?-Betti number of G by bg)(G; k) := dimp, H?(G; k).

The k-L2-cohomology of G will also play a role. It is defined by
(2)(G; k) :=H"(G; Dyey)

and we define the cohomological k-L?Betti numbers by (G k) := dimp, , Hy) (G k).

2.5.1 The Atiyah Conjecture

We now justify the terminology of the previous section by recalling some facts about
the usual L-invariants of a group. Any group G acts by left multiplication on L?(G),
and therefore C[G] is naturally a sub-algebra of the algebra of bounded operators on
L?*(G). The set of bounded operators on L?*(G) that commute with the G-action is
denoted by N(G) and called the von Neumann algebra of G. The set of non-zero
divisors in N (G) is a left and right Ore set by [Ber82], and thus we can form the Ore
localisation U (G), which is called the algebra of unbounded operators affiliated to G.
It is possible to define a rank function for modules over U(G), and the strong Atiyah
Conjecture over C is a prediction about the possible values of the rank of a matrix
with entries in C[G]. We are interested in the following equivalent formulation of the

conjecture due to Linnell [Lin93].

Definition 2.5.2 (The Atiyah Conjecture). A torsion-free group G satisfies the
Strong Atiyah Conjecture over C if and only if the division closure of C[G] in U(G)

is a division ring.

In general, the division closure of C[G] in U(G) is called the Linnell ring of G and
denoted by D(G), so the Strong Atiyah Conjecture over C for a torsion-free group G

is the statement that the Linnell ring of GG is a division ring. In this case, the Linnell
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ring of GG has the Linnell property defined above. Moreover, when G is torsion-free
and satisfies the Strong Atiyah Conjecture over C, then the usual L?-Betti numbers

of G can be computed using the Linnell division ring as follows:

b2(G) = dimpe) Ha(G; D(G))

n

We refer the reader to [Liic02, Chapter 10| for more details on this material.
When G is locally indicable, then G satisfies the strong Atiyah Conjecture over
C by a result of Jaikin-Zapirain and Loépez-Alvarez [JZLA20]. We emphasise the

following corollary of their result.

Theorem 2.5.3 ([JZLA20, Corollary 1.4]). Let G be locally indicable and let k be a

field of characteristic zero. Then Dyq exists.

2.5.2 Properties

We collect some properties of k-L?-invariants.

Proposition 2.5.4. Let G be a locally indicable group and k be a division ring such
that Dy exists.
(i) If H < G is a subgroup of finite index, then bg)(H; k) =[G : H]b (G k) for
allmn > 0.
(ii) If G is of finite type, then x(G) = > - o(—1 1) (G k).
(iii) For alln >0, we have b} )(G k) = by (Gs k).

Proof. Fix a projective resolution P, — k. By the Linnell property, Py ®xq D

and P, ®p(g) Dy are isomorphic as chain complexes of Dygj-modules. Hence,

b? (H; k) = dimp,,, H,(Py @y D)
_dlka H, (P, Rkl Dk[G])
=[G : HP(G: k),

since dimp, ,, Dyjq) = [G : H] by the Linnell property, proving (i). Claim (i) follows
immediately from the rank-nullity theorem and a standard dimension counting argu-
ment (compare the usual proof that the Euler characteristic is the alternating sum of

Betti numbers). Finally, claim (iii) follows at once from the familiar isomorphism

Homp,, (H.(G; Dyc)); Driay) = H"(G; Dyiay)- O
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If G has a finite-index subgroup H such that Dy exists, then item (i) allows us
to define b2(G; k) := U ik,

The next property gives a useful vanishing criterion for k-L2-Betti numbers. It is
an analogue of |Gab(02, Théoréme 6.6] for k-L>-Betti numbers. When the quotient
is Z, the author obtained this result in [Fis24a, Theorem 6.4]. The proof in the case
where the quotient is amenable is completely analogous, and was originally proven in

the article [FK24| of the author and Klinge.

Theorem 2.5.5. Let 1 — N — G — Q) — 1 be a short exact sequence of groups,
where G is locally indicable, Q) is infinite amenable, k is a field, and Dy exists. If
b (N k) < oo, then bP(G) = 0.

Proof. Let Cy — k — 0 be a free resolution of k|GJ]-modules. Since Dy¢) is Linnell,

using [Tamb4| we have identifications Dyig) = Ore(Dyn) * Q) and

Din) @rn Cr = Diyvy Qrn @ k[G] = @ka] Qpn k[G] = @ Dyiny * Q
I, In

In

for some index set I, for each integer n. Thus, we have inclusions of chain complexes

2 D P+ @ —— B, Pum * @ —— Dy, , D+ @ ——

[ J [

S ®In+1 Dk[G] — ®In Dk[G] — ®In71 Dk[G] — )

where the upper chain complex computes Hq(N; Dyn) and the lower chain complex
computes Ho(G; Dyiq).

For any n-cycle ¢ € Z,(D,, Di(q)), there is some o € Dyn) * Q such that ac €
@D.. Drvy * Q. Then (Dyn) * Q) - ac is an infinite-dimensional Dy(y)-subspace of
Zn (B, Diinvy * Q). But bg)(N; k) < oo, so there must be some d € B, Dy * @
such that d = 3 - ac for some nonzero 3 € Dy * Q. Hence, d((Sor)~d) = ¢, which
proves that bg)(G; k) =0. O

We will also make use of the following result, which states that the vanishing of

the top-degree k-L2-Betti number passes to subgroups. This was proved in the article
[FM23] of Morales and the author.

Proposition 2.5.6. Let G be a locally indicable group with c¢dy(G) = n for some
division ring k and suppose that Dyq exists. If b;Q)(G; k) =0, then bg)(H; k) =0 for
every subgroup H < G.
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Proof. We claim that the natural map
Dy Qwjay P — Dijg) Oria) P

is injective for any projective k[G]-module P. Since there is a module @) such that
P& Q is free, it is enough to prove the case where P is free. It then suffices to prove
the case P = k[G]. But then the claim is just a restatement of the Linnell condition,
which Hughes-free division rings possess.

The result now follows quickly. Let 0 — P, — --- — Fy — k — 0 is a projective
resolution of the trivial k[G]-module k. Then

injects into
HP(G; k) = ker(Dyig) @ki) P — Diia) @ic) Po1),

by the previous paragraph. O
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Chapter 3

Novikov homology and algebraic
fibrings of RFRS groups

The purpose of this chapter is to establish Sikorav’s Theorem over arbitrary coefficient
rings, and then use it to prove a theorem on virtual algebraic fibrations of RFRS

groups.

3.1 The X-invariant and Novikov homology

The material from this section is based on Sections 3, 4, and 5 of [Fis24a].

3.1.1 Valuations on free resolutions

In this section, we introduce valuations on free resolutions over a group ring. We will
be very closely following Bieri and Renz [BR88| where the theory is developed in the
case where the ring is Z. Their proofs go through without change when Z is replaced
by an arbitrary ring R.

Let R be aring, G a group, and M a left R[G]-module. Recall that a free resolution

of M is an exact sequence
= bk, —-F_ 41— F—->M-=0

of left R[G]-modules, where F; is free for all ¢ > 0. The boundary maps of the
resolution are denoted 0, : F,, — F,_1, though we will often omit the subscript. The
free resolution is usually denoted by F, — M. Let F be the free R[G]-module ;- F;,
and define the n-skeleton of F to be F™ := @} F;. The elements of F are called
chains, so a chain is not necessarily an element of F; for any ¢ in our context. Fixing a
basis X; for each F}, we note that X := [ J;°, X; is a basis for F and X™ := I X;
is a basis for F(™. The resolution F, — M is admissible with respect to X if Ox #0
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for every x € X. We will always assume that our free resolutions are admissible with
respect to the basis we are working with. This is not a strong requirement, since if
all boundary maps are nonzero, then F has a basis with respect to which F, — M
is admissible; otherwise we can truncate the resolution and choose a basis to obtain
an admissible resolution of finite length. We also define the support of a chain ¢ € F'
(with respect to X), denoted suppy(c), as follows: every chain ¢ € F' can be written
uniquely as > ex 79,297, Where 1y, € R. Then suppy(c) := {gz : 14, # 0}; we
will usually drop the subscript X when the basis is understood.

Let x: G — R be a non-trivial character, that is, a nonzero group homomorphism
from G to the additive group R. This provides the elements of G with a notion of
height, which we now extend to the chains of F. Let R, = RU {00}, where oo is an
element such that ¢t < oo for every t € R. We construct a function vy : F — Ry, via
the following inductive procedure. For an element ¢ € Fy, define vx(c) = inf{x(g) :
gx € supp(c)}. Let n > 0 and assume that we have defined vx on F,_;. For x € X,
let vx(z) := vx(dz). For ¢ € F,, set vx(c) = inf{x(g9) + vx(z) : gz € supp(c)}.
For an arbitrary ¢ € F, write ¢ = ), ¢;, where ¢; € F;, and define ¢ = inf,{vx(¢;)}.
We are assuming the convention vy (0) = oo, since supp(0) = @. The function vy is
called the valuation extending x with respect to X. It is clear from the definition that
vx(c) = inf{x(g) +vx(x) : gz € supp(c)} for any chain ¢ € F. Again, we will usually
drop the X in the subscript when the basis is understood.

Proposition 3.1.1. For the valuation vx = v: F — Ry, defined above and for any
¢, € Fand g € G, we have
(1) v(c+¢) = min{v(c), v(¢)};
(2) v(c) <w(re) for allr € R, and v(c) = v(re) if r is not a zero-divisor;
(3) ifv(c) # v(c), then v(c+ ¢) = min{v(c),v(d)};
(4) v(gc) = x(g) + v(c);
(5) v(c) = 00 if and only if ¢ = 0;
(6) if c € Do Fi, then v(dc) = v(c).

Proof. (1) follows from the fact that supp(c+ ¢’) C supp(c) Usupp(c’). The first part
of (2) follows from the fact that supp(c) 2 supp(rc). If r is not a zero-divisor then
supp(c) = supp(rc), which yields the second statement of (2).

To prove (3), assume without loss of generality that v(c) < v(¢’). Then,

v(c) =v((c+ ) =) = min{v(c+ ), v(=)} = min{v(c+ ), v()}.
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Then min{v(c + ¢),v(¢)} = v(c+ ), since we assumed that v(c) < v(c¢’). Hence,
v(c) = min{v(c),v(d)} = v(c+ ). But v(c+ ) = min{v(c),v(c)} by (1), so we
obtain (3).

For (4), we have

v(ge) = nt{x(h) +v(x) : ha € supp(gc)}
= inf{x(g(g"'h)) + v(z) : ha € g-supp c}
= x(g) +inf{x(g7"'h) + v(x) : (97" h)x € suppc}
= x(9) +v(c).

For (5), we first show that if ¢ € F,, \ {0}, then v(c) < oo by induction on n. This
is true for n = 0 since x(G) C R. Now let n > 0. Since ¢ # 0, there is some element

gz in its support, where ¢ € G and x € X. Then

v(c) < v(gr) = x(g) +v(z) = x(9) + v(0x) < 00

by the inductive hypothesis and by admissibility of F, — M with respect to X.
For a general nonzero element ¢ € F, write ¢ = ) . ¢; with ¢; € F;. Then v(c) =
inf;{v(c;)} < oo since at least one of the chains ¢; is nonzero. Conversely, if ¢ = 0,

then v(c) = oo, since the infimum of the empty set is co.
For (6), let c =3 cx 79297 € D,y Fi- Then

v(0c) = v (8 ( Z rg,xgx>)

=u< > rg@gax)

> inf {v(;"g +90x) = gx € supp(c)} (by (1))
> inf {v(g0x) : gx € supp(c)} (by (2))

= inf{x(g) + v(dz) : gx € supp(c)}
= inf{x(g) + v(z) : gx € supp(c)}
=v(c). H

Definition 3.1.2 (Valuation subcomplex and essential acyclicity). Given an ad-
missible free resolution Fy, — M over R|G| (with respect to some fixed basis X),
a non-trivial character y: G — R, and the valuation v: FF — R, extending Yy,
define the wvaluation subcomplex of F with respect to v to be the chain complex

- — F' — ... - Fy — M — 0, where FY = {c € F,, : v(c) > 0}. We denote the
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valuation subcomplex by Fy — M and let F¥ := @.°, F?. Proposition 3.1.1(6) en-
sures that F} — M is a chain complex of left R[G,]|-modules, where G, is the monoid
{9 € G : x(g9) = 0}. It is not hard to show that each F} is a free R[G,]-module and
has an R[G,]-basis of cardinality |X;|, where X; is an R[G]-basis for F;.

The chain complex FY — M is essentially acyclic in dimension n if there is a real
number D > 0 such that for every cycle z € F! there is a ¢ € F,,1 with dc = z and
D > v(z) —v(c). We extend the definition of essential acyclicity to dimension —1 by
declaring that v(m) = 0 for all m € M \ {0}.

The definition of essential acyclicity in dimension n is equivalent to the following
seemingly weaker condition: for every cycle z € F?, there is a ¢ € F,, 41 such that
OJc = z and v(c) > —D. To see this, let z € F be a cycle. It is easily shown that
v(F) C x(G) U{oo}, so there is a g € G such that x(g) = v(z). Since g~'z is also in
FY with v(g~'z) = 0, there is some ¢ € F,, such that dc = ¢~'z and v(c) > —D.
Thus, 0(gc) = z, and D > v(z) — v(gc).

3.1.2 Horochains

Definition 3.1.3 (The complex of horochains and horo-acyclicity). Let Fy — M
be an admissible free resolution with respect to some basis X, let y: G — R be a
non-trivial character, and let v: F' — R, be the valuation extending x. Define F
to be the left R[G]-module of formal series that are finitely supported below every
height. More precisely, F is the R[G]-module of formal series 3
that

QGG,I'GX rg’zgx SuCh

{9z - v(g) <t,rge # 0}

is finite for every ¢ € R. The elements of F are called horochains. 1f ¢ € F , then
its support is suppx(¢) := {gz : rg, # 0}. Let F, C F be the subset of horochains
with support in F; and let F(" := @?:oﬁi' Proposition 3.1.1(6) guarantees that
0: F, — F,_; extends to a map 0: ﬁn — An_l in the obvious way, so we get a
complex --- — ﬁn — e — ﬁo —+ 0. Note that I is not equal to @;’ZO Z?’l since the
support of a horochain might intersect infinitely many of the modules E. A cycle
in the chain complex F is called a horocycle. We say that F, — M is horo-acyclic
in dimensions n > 0 with respect to v if the chain complex --- — ﬁl — ﬁo — 0 is

acyclic in dimension n.

We can extend the definition of v to F by defining v(¢) := inf{v(gz) : supp(¢)} for

any horochain ¢. If ¢ # 0, then {v(gz) : supp(¢)} is nonempty and attains a minimum
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because chains are finitely supported below any given height. Properties (1) through
(5) of Proposition 3.1.1 hold in this setting with the same proofs.

A version of Proposition 3.1.1(6) holds for horochains, namely we have v(9¢) >
v(¢) for all horochains ¢, but we need to modify the proof: If ¢ = 0, then the claim
is clear. Otherwise, let ¢ # 0 be a horochain, and let gx € supp(¢) be such that
v(gx) = v(¢). By the finite version of (6), we have that v(9¢'z") > v(¢'z") = v(gx) for

"0

every ¢g'z’ € supp(¢). Since every g”x” € supp(0¢) is contained in supp(dg’x’) for some
g'z" € supp(¢), we have that v(g"z") > v(9¢'z") = v(gx) for every ¢g"z" € supp(9¢).
Thus, v(0¢) = v(¢).

The following lemma will be used in the proof of Theorem 3.1.7.

Lemma 3.1.4. Let Fy — M (resp. F, — M) be a free resolution over R[G] admissible
with respect to a basis X (resp. X'), and let v (resp. v') be the valuation extending
a non-trivial character x: G — R. Suppose that F™ is finitely generated, and that
p: F'— F' is a homomorphism of R[G]|-modules. Then

(1) ¢ induces a homomorphism of left R|G|-modules given by

P F™W = F S rggw— Y rgagp(x)
(2) v (3(¢)) = v(&) + min, ey {v' (p(x)) — v(x)} for every ¢ € F™.

Proof. For (1), we need to show that 3(¢) is a horochain for any horochain ¢ € F™.
To this end, let ¢ = Y r,,9x, and note that there are only finitely many elements
x € X such that gz € suppy(¢). If @(¢) is not a horochain, then the set {gx €
suppy (¢) : v'(gp(r)) < t} is infinite for some ¢ € R. Since F(™ is finitely generated,
there is some fixed y € X such that v'(gp(y)) < t and gy € suppy(¢é) for infinitely
many values of g € G. But then

v(gy) = x(g9) +v(y)

x(9) +v'(¢(y)) +v(y) —v'(e(y))
v'(g9(y) +v(y) —v'(p(y))
t+o(y) —v'(ey))

N

for infinitely many gy € suppy(¢), but ¢ is a horochain.
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For (2), write ¢ = >y Gy, Where &, =3~ 7g.97. Then

V(E@) > min (/7))

> min {inf{v'(gp(x)) : gz € suppé, }}

zeX (™)
— min {inf{u(g2) : go € supp&,} + v/(p()) — vlx)}
~ min {0(e,) +(p(x)) - v(a)}
> min {v(&,)}+ min {v/(p(z)) - ()}
= (e )+$g§g){v( o) — (e} a

Note that Lemma 3.1.4(2) applies to chains in F, since these are just finite
horochains. We will use this in the proof Theorem 3.1.7.

3.1.3 Characterisations of the Y-invariant

We introduce the invariants ¥ (G; M), which are generalisations of the classical Bieri—
Neumann-Strebel invariant [BNS87] and its higher dimensional analogues [BR8S].
The only difference is that we work over a general ring R, while the higher BNS
invariants are defined over Z.

Let G be a group. We declare two characters x,x': G — R to be equivalent if
X = a -y for some a > 0 and let S(G) denote the set of equivalence classes of
nonzero characters. We call S(G) the character sphere of G, because it can be given

the topology of a sphere when G is finitely generated.

Definition 3.1.5 (X-invariants). Let M be an R[G]-module. Then define
YR(G; M) ={[x] € 5(G) : M € FP,(R[G])},

where G, = {g € G : x(g9) > 0}. Note that G,, = G if [x] = [X'], so L%(G; M) is
well-defined.

Definition 3.1.6 (Novikov ring). Let G be a group, let R be aring, andlet y: G — R

be a character. Then the Novikov ring R[G] is the set of formal sums

D "ef

geG

/\X
such that {g € G : r, # 0 and ¢(g) < t} is finite for every ¢ € R. We give R[G] a
ring structure by defining rg + r'g := (r +1')g and rg - '¢g’ := rr'gg’ for r,v’ € R,
/\X
9,9 € G, and extending multiplication to all of R[G| in the obvious way.
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Theorem 3.1.7 gives several characterisations of the Y-invariants. More specif-
ically, we will need the characterisation of ¥%(G; M) in terms of the vanishing of
Novikov homology; this is the equivalence of (1) and (5) in the following theorem,
which should be thought of as a higher dimensional version of Sikorav’s theorem
[Siks7].

Theorem 3.1.7. Let R be a ring, let M be a left R|G|-module of type FP,, and let
x: G — R be a non-trivial character. Let Fy — M be a free resolution admissible with
respect to a basis X = J;°, X; and with finitely generated n-skeleton F™_ Letv: F —
R, be the valuation extending x with respect to X. The following are equivalent:

(1) [ € TH(G: M),

(2) F? — M is essentially acyclic in dimensions —1,...,n —1;

(3) there is a chain map ¢: F — F lifting the identity idy; such that v(e(c)) > v(c)

for every c € F™;
(4) Fy — M s horo-acyclic in dimensions 0, ... ,n with respect to v;
(5) Torf[G}(}?[a]x, M) =0 for all 0 <i < n.

The strategy of the proof will be as follows: we begin by proving (2) = (3) =
(4) = (2). This is done by Schweitzer in the appendix of [Bie07] in the case R = Z.
Once this is done, we prove the equivalence of (4) and (5), again following Schweitzer.
Finally, we prove the equivalence of (1) and (2) following the appendix to Theorem
3.2 in [BR8S|, where again this is done in the case R = Z. The proofs below are
essentially the same as those given in the references just cited; there is no crucial

dependence on the coefficient ring R.

Proof of (2) = (3). Assume that FY — M is essentially acyclic in dimensions < n—1
and let D > 0 be a constant such that for each kK < n and every cycle z € F}, there
is a chain ¢ € Fj4; with Oc = z and D > v(2) — v(c). We will construct a chain map
¢: F — F lifting idy; such that v(p(c)) > v(c) + (n — k)D for every ¢ € F*) which
implies (3).

We define ¢ on F*) by induction on k. For the base case, let z € X, be arbitrary,
and fix some g € G such that x(g) > (n+ 1)D. The element g~ 'dz € M is a cycle,
so there is some ¢, € Fy such that dc, = g7 '0z and D > v(g~'0x) — v(c,) = —v(ca),
since v|pn oy = 0. Define ¢ on F© by setting (z) = ge, for each x € X;. It is clear
that idy;0 = ¢ on F©). By Lemma 3.1.4(2),

v(p(c)) = v(e) + min{v(p(z)) - v(z)} > v(c) +nD
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for every ¢ € F©),

Let k > 0 and suppose ¢ is defined on F*~1) such that it lifts idy; and v(p(c)) >
v(c) + (n — k 4+ 1)D for all ¢ € F*Y. Let # € X; and note that ¢©(dz) is a
cycle. By essential acyclicity, there is a chain d, € Fj such that dd, = ¢(0x) and
D > v(p(dr)) — v(d,). Define ¢ on F® by setting ¢(x) = d,. Then pd = dp by

construction, and for every x € X we have

v(p(x)) = v(z) = v(ds) — v(2)
2z v(p(0x)) —v(z) = D
= v(p(dx)) —v(0x) — D
> (n—k)D
by induction. By Lemma 3.1.4(2), we have
0((0)) > () + min {o(p(x)) — ()} > v(c) + (n — K)D, a

reXy

We pause here to prove a lemma that will immediately imply (3) = (4) and will
be useful in the proofs of (4) = (2) and (4) = (5). We recall that the maps H and

© that appear in the statement of the lemma below are defined in Lemma 3.1.4.

Lemma 3.1.8. With the assumptions of Theorem 3.1.7, let p: F' — F be a chain
map lifting idy; such that v(p(c)) > v(c) for all c € F™ and let H: F — F be a
chain homotopy such that OH + HO = idr —p. Let Z € F™ pe g horocycle and define

Gz = 00, H\@(é) Then ¢; is a horochain and 0¢: = 2.
Proof. By Lemma 3.1.4(2) there are constants o and  such that
v(B(e)) > v(¢) + o and v(H(2)) > v(e) +

for every horochain ¢ € F™. Moreover, a > 0 since v(p(f)) > v(f) for every
f € F™. To see that ¢ is a horochain, by induction we have v(f{\@(é)) > v(2)+ia+p,
so for all ¢ € R there are only finitely many integers ¢ > 0 such that v(ﬁ{ﬁ’(é)) < L.
Since supp(éz) € U2, supp(HF'(2)) and each HF'(2) is a horochain, it follows that
there are only finitely many gz € supp ¢ such that v(gz) < ¢, so ¢ is a horochain.

Finally, we have

06 =S 0TF() = 3 idg ~6 — HOF(2) = S (@~ §7)(5) =2 D
i=0 =0 =0

32



Proof of (3) = (4). By |Bro94, Lemma 1.7.4], there is a chain homotopy H: F' —
F such that O0H + HO = idp—¢. If Z € F® s a horocycle, then d¢: = 2 by
Lemma 3.1.8. O]

Proof of (4) = (2). We will prove that FY — M — 0 is essentially acyclic in dimen-
sion k for all k& < n by induction on k. For the base case, we show that F} — M — 0
is exact at M, which implies essential acyclicity in dimension —1. Let m € M. By
exactness of F, — M — 0, there is a chain ¢ € Fy such that dc = m. By horo-
acyclicity in dimension 0, there is some horochain ¢ € P 1 such that 0¢ = ¢. There are
c_ € Fy and ¢, € F such that ¢ = c_ + é;, where v(c-) < 0 and v(¢;) = 0. Then
d(c — 0c_) = m and

v(ic—0c_)=v(c—0(¢—¢y)) =v(0¢y) = v(éy) = 0.

This shows that ¢ — dcy € Fj, which proves that F; — M is exact at M.

Let £ > —1 and suppose that F} — M is essentially acyclic in dimensions < k.
By (2) = (3) applied at k — 1 there is a chain map ¢: F' — F lifting idys such that
v(p(c)) > v(c) for all ¢ € F®). Since idr and ¢ both lift idy; and F, — M is acyclic,
there is a chain homotopy H: F' — F such that 0H + HO = idp —¢ (see |[Bro94,
Lemma 1.7.4]). As in the proof of Lemma 3.1.8, there are constants a > 0 and 5 < 0
such that

v(p(e)) = v(e) + o and v(H(c)) = v(c) + 5

for every ¢ € F),

Let z € F} be a cycle. Since F, — M is acyclic, there is some d € Fj4; such that
dd = z. Consider the horocycle 2 := d — d., where d, = Sooco Ho'(2) is defined as in
Lemma 3.1.8. Note that

v(H@'(2)) Z v(z) +ia+ 5 > B

for every i > 0, and therefore that v(d.) > . By horo-acyclicity in dimension k + 1,
there is a (k + 2)-horochain d such that dd = 2. As in the base case, there are
d_ € Fy 5 and d, € ﬁk.’_Q such that d = d_ + d.,, where v(d_) < 0 and v(d;) > 0.
Then 0(d — dd_) = 0d = z, and

v(d—8d_) =v(d, + 2 — d(d —d,))
= v(d. + dd,)
> min{v(d.), v(dd, )}
>3
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~

since v(d,) = f and v(0ds) = v(dy) = 0 > §. Letting D = —f in the definition of
essential acyclicity, we see that FY — M is essentially acyclic in dimension k. m

Proof of (5) = (4). Suppose that TorR[G](]?[E]X, M) =0 for 0 < i < n. Consider the

7

chain map

—

¢:R[G]X®R[G]F—>ﬁ, a®cr ac

of left R[G]-modules. It is clear that 1 is injective. We claim that ¢ induces an
/\X A~
isomorphism R[G] ®pgjq) F™ — F™. To see this, simply note that for an arbitrary

Cc = E Tg gl

geG
zeX (™)

horochain

in (") we have

E (E rg@g) Rz ¢
reXx(n) \geG

—

X
The horochain condition implies that the sums ) _,7,.9 are elements of R[G] .

€q
Thus, 9 is surjective on the n-skeleta and is thereforeg an isomorphism. Note that this
only works because X (™ is finite; in general, we cannot expect v to be surjective since
the support of a horochain might intersect infinitely many of the modules F;,. Since
Torf[G](jg[E]X ®Qgie) F, M) = 0 for all 0 < i < n, we conclude that Tor;(F, M) =0

for 0 <7 < n as well. O

Proof of (4) = (5). The map ¢ defined above is an isomorphism of the n-skeleta, so

—

we immediately have that TorZR[G](R[G]X, M) =0 for 0 <i<n-—1. Since ¢ is not
necessarily surjective as a map of the (n + 1)-skeleta, we must work harder to show
that Torf[G}(]ﬂa]x, M) =0. Let z € ﬁ[Ef ®g(qc) F, be an n-cycle, and let 2 = 1(z).
Since we are assuming that (4) holds, we may also assume that (3) holds and use the
horochain ¢: from Lemma 3.1.8. Since ¢; € f—[\(ﬁn), we have that ¢; is in the R/[E]X-
submodule of ﬁnﬂ generated by o (X,), and thus ¢; € im v since this is a finite set.
Let ¢ € }?[E]X ®gq] Frs1 such that ¢(c) = ¢;. Then ¥0(c) = 0vY(c) = 0¢; = 2. But

1) is injective, so dc = z, proving that Torf[G](]g[E]X, M) =0. H

We pause again before proving the equivalence of (1) and (2) to prove another

lemma.

Lemma 3.1.9. Free R[G]-modules are flat over R[|G,].
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Proof. 1t suffices to prove that R[G] is flat as an R[G,]-module, since the direct
sum of flat modules is flat. To this end, let t: M — N be an injection of right
R[G]-modules; our goal is to show that + ® id: M ®gg,) RG] — N ®gje, R[G]
is injective. Let g € G be such that x(g) < 0 and consider the left R[G,]-module
R[G,]g* = {ag" : a € R|G,],k € Z}. The modules R[G,]g" form a directed system
with respect to the inclusion maps R[G,]g" — R[G,]¢' for k <[ and the direct limit
is lim R[G\]g" = R[G].

There are left R[G,]-module isomorphisms R[G,]¢* — R[G,] given by right
multiplication by ¢g~*. Then R[G,]¢" is flat over R[G,], so M ®gic,] R|G\]g" —
N ®@pgia,) RIGy]g* is injective for all k € Z. By exactness of the direct limit,

h_H)l(M ORIGy] R[Gx]gk) - h_H}(N ORIGy] R[Gx]gk)

is injective. Since the direct limit commutes with the tensor product, the previous

line implies ¢ ® id,; is injective. O]
We now return to the proof of Theorem 3.1.7.

Proof of (1) < (2). Let g € G be such that x(g) < 0 and let Ej be the left R[G,]-
module g* V. We denote the chain complexes F — M and (Ey), — M by Y and
Ek, respectively.

Essential acyclicity in dimension j is equivalent to the existence of an integer
D > 0 such that the inclusion-induced homomorphism Hj(Ek) — Hj(Ek+ p) is the
zero map for all k € N. This in turn is equivalent to lim [], H J(Ek) = 0 for any index
set I. Here, for fixed I and j, the powers [[; H;(E)) form a directed system with
respect to the inclusion-induced maps [[; Hj(Ek) — 11 Hj(ﬁl) for k£ < [. Indeed, if
D > 0 is such that Hj(Ek) — Hj(Ek+D) is the zero map, it is clear that the direct
limit will be zero. Conversely, let I = Zj(EO) = Zj(ﬁ”) be the set of j-cycles of F*
and consider the element ([z]),e; € [[; H j(Eo). Since the direct limit is zero, there is
some D > 0 such that ([z]),er = 01in []; Hj(ED), which means that F* is essentially
acyclic in dimension j.

There is a short exact sequence of chain complexes 0 — M — Ek — B — 0,
where, by abuse of notation, M is a chain complex concentrated in dimension —1
and FEj is the chain complex (Ej)s — 0 with (E))o in dimension 0. The long exact
sequence in homology associated to the short exact sequence gives H j(Ek) = H,;(Ey)

for 5 > 1. The interesting part of the long exact sequence is

0 — Ho(Ey) — Ho(Ep) 2 M — H_y(E}) — 0,
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where ¢ is the connecting homomorphism. By exactness of the direct power and direct

limit functors, the sequence

. ~ . 1,6 . ~
0 — lim [ [ Ho(Ex) — lim [ [ Ho(Er) == [[ M — lim [ [ H-1(Ex) — 0
1 1 I 1

is exact. Then FV is essentially acyclic in dimension 0 if and only if § induces an
injection lim []; Ho(Ex) — []; M for every I. Moreover, F" is essentially acyclic in
dimension —1 if and only if ¢ induces a surjection lim []; Ho(Ex) — [, M for every
1.

By Lemma 3.1.9, F, — M is a flat resolution of M by left R[G,]-modules, so

Tor 10 (H R[G,], M) ((HR > ® Ry ] F)

and therefore

Tor 19 (H R[GX],M> = lim A, ((HR ) ®ric,) E ) ,

as F = lim [ and direct limits commute with tensor products and homology. Since
(Eg);is a ﬁmtely generated free R[G]-module for j < n, we have (][], R[Gy]) ®rja,
(Ek); = [1;(Ek);. Hence, Torj X](Hz R[G,], M) = lim H;(]]; E%) for j <n.
To summarise the work done above, we have F" is essentially acyclic in dimensions
—1 < j <nif and only if
(a) (I1; RIGy)) ®ricg M — [1; M is surjective if n = 0 and
(b) (I, RIG,]) ®rjcy M — [I; M is an isomorphism and

Torf[GX} (H RG], M>
I

vanishes for 1 < j < n otherwise.
Here we have used the general fact that Tory (A, B) = A ®p B. Together with
Lemma 1.1 and Proposition 1.2 of [BE74]|, (a) and (b) are equivalent to M being of
type FP,,(R[G,]). Thus, we conclude that [x] € £ (G; M) if and only F" is essentially

acyclic in dimensions j = —1,0,1,...,n — 1. O]

3.2 Virtual algebraic fibrations of RFRS groups

A group G algebraically fibres, or simply fibres, if there is an epimorphism ¢: G — 7Z
with finitely generated kernel. We will mostly be concerned with groups that virtually
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fibre, i.e. that admit a fibred finite-index subgroup. If P is a finiteness property of
groups, we will say that G admits a virtual algebraic fibration ¢ with kernel of type
P if there is a finite-index subgroup H < G with an epimorphism ¢: H — Z whose
kernel is of type P.

The connection between algebraic fibring and the Y-invariants is given by the
following special case of a result of Bieri-Neumann—Strebel (for the n = 1 case) and

Bieri-Renz (for the higher degree case).

Theorem 3.2.1 ([BNS87|,[BR8S8|). Let G be a group of type FP(R) for some ring R.
The kernel of the epimorphism x: G — Z is of type FP,(R) if and only [x]| and [—X]

are contained in X% (G5 R).

We will also need the following result of Kielak, which connects the L2 and
Novikov homology of RFRS groups. Kielak originally proved the result over Q; the
statement over arbitrary division rings is implied by Jaikin-Zapirain’s appendix to
[JZ21]. See also [0S24] for a different proof.

Theorem 3.2.2 (|Kie20b, Theorem 5.2|). Let G be a RFRS of type FP,, (k) for some
division ring k. If bZ@)(G; k) =0, then there is a finite-index subgroup H < G and an
——X

antipodally symmetric open set U C S(H) such that U 2 S(G) and H;(H; k[H] ) =0
forall x € U.

We are now ready to prove one of the main results of this thesis.

Theorem 3.2.3. Let G be a RFRS group of type FP, (k) for some division ring k
and nonnegative integer n. Then G virtually algebraically fibres with kernel of type
FP, (k) if and only if B> (G: k) = 0 for all i < n.

Proof. Tt is clear that a group of type FP,, (k) has finite k- L2-Betti numbers in degrees
at most n. Thus, if G virtually algebraically fibres with kernel of type FP,(k), then
b§2)(G; k) = 0 for all i < n by Proposition 2.5.4(i) and Theorem 2.5.5.

Conversely, suppose that bEQ)(G; k) =0 for all ¢ < n. By Theorem 3.2.2, there is
a finite-index subgroup H < G and a map x: H — Z such that H;(H; @ix) =0.
But then y and —yx are in ¥7(G; k) by Theorem 3.1.7. Finally, by Theorem 3.2.1,

this implies that ker(x) is of type FP,(k), as desired. O

As a first application, we restrict the class of amenable RFRS groups of finite type.
This can be viewed as an extension of the fact that virtually polycyclic RFRS groups
must be virtually Abelian (Corollary 2.4.5). This is also related to a conjecture of P.
Kropholler, which predicts that amenable groups of finite type are virtually solvable.
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Corollary 3.2.4. Let G be an amenable RFRS group of type FP (k) for some division
ring k. Then G is virtually Abelian.

Proof. We will prove that G is virtually poly-Z, which is enough by Corollary 2.4.5.
We induct on cdy(G), which is necessarily finite. If ¢d,(G) = 0, then G is trivial and
there is nothing to show. Suppose that cd,(G) = n > 0. Note that G is k-L*-acyclic
(this follows from [Tam5b4| and is a special case of Theorem 2.5.5), and G admits a
virtual map to Z with kernel N of type FP(k). By [Fel71, Theorem 2.4], this implies
that cdy(N) =n — 1, and by induction we conclude that N is virtually poly-Z. But
then it is not hard to see that G is itself virtually poly-Z. [

In a different direction, we obtain a family of hyperbolic manifolds of all odd-
dimensions whose fundamental groups virtually algebraically fibre with kernels of type
FP(Q). The kernels of these algebraic fibrations were shown to be non-hyperbolic by
Kudlinska in [Kud23|, which gave the first family of examples of hyperbolic groups
with non-hyperbolic subgroups of type FP(Q) in all cohomological dimensions. Note
that Italiano, Martelli, and Migliorini give an example of a hyperbolic group (of coho-
mological dimension 5) with a non-hyperbolic subgroup of finite type in [IMM23]. It
was also remarked by Llosa-Isenrich—-Martelli-Py in [IMP24] that in even dimensions,
Theorem 3.2.3 yields examples of hyperbolic groups with subgroups of type FP,(Q)
but not FP,1(Q) for all n, solving a homological analogue of a question of Brady
[Bra99|. Brady’s original question was completely answered by Llosa-Isenrich and Py
in [LP24], where they provide examples of hyperbolic groups with subgroups of type

F,, but not F,, . for all n.

Corollary 3.2.5. Let I' < PO(n, 1) be a uniform arithmetic lattice of simplest type.
(1) If nis odd, then T" virtually algebraically fibres with kernel of type FP(Q).
(2) If n is even, then I' virtually algebraically fibres with kernel of type FPn_1(Q)
but not FP= (Q).

Proof. By [BHW11], ' acts geometrically on a CAT(0) cube complex, and therefore
I is virtually RFRS by [Agol13]. By [Dod79|, the L?-Betti numbers of a lattice in
PO(n, 1) are concentrated in its middle dimension, so the result then follows imme-
diately from Theorem 3.2.3 and the fact that if a group G is of type FP,(Q) and
cdg(G) < n, then G is of type FP(Q). O
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3.2.1 Kernels with finite Betti numbers

In [JZ21, Corollary 1.5], Jaikin-Zapirain shows that if a finitely generated RFRS group
GG admits a map to Z with kernel having finite first Betti number, then G is virtually

fibred. Theorem 3.2.3 allows one to extend this phenomenon to higher degrees.

Theorem 3.2.6. Let k be a division ring and let G be a RFRS group of type FP,, (k).
The following are equivalent:

(1) G admits a virtual map onto Z with kernel of type FP,(k);

(2) G admits a virtual map onto Z with kernel N satisfying b;(N; k) < oo for all

1< n.

Proof. If G virtually algebraically fibres with kernel of type FP, (k), then it is clear
that the Betti numbers b;(N; k) are finite for all i < n.

By Theorem 3.2.3, to prove the converse it suffices to show that bgz)(G; k) =0
for all i < n. By multiplicativity of the k-L2-Betti numbers, we may assume that G
admits a map onto Z with kernel N satisfying b;(IV; k) < oo for all i < n. We write
k[Z] for the group algebra k[G/N]. By Shapiro’s Lemma, H;(N; k) = H;(G; k[Z]) for
all 7. Let

= k[G]% = = E[G]* -k — 0

be a free resolution of the trivial k[G]-module k, where d; is some cardinal for each
i and d; is finite for each i < n, and we use the notation k[G]% to denote the d;-fold
direct sum of copies of k[G], as opposed to the d;-fold direct product. The quotient

map G — Z induces a chain map

22y kG)e 2 k[GY P 2 k(6] 2 0
0710 d i l d o o l d %
k[Z] n-+1 k[Z] n S e > k[Z] 0 e 0,

where the boundary maps are viewed as matrices and 8? is obtained by applying the
map G' — Z to each entry of the matrix d,. Note that the homology of the bottom
chain complex is Hq(G; k[Z)]).

To apply results on rank functions, we need the boundary maps to be between
finitely generated free modules. However, d, ., is not finite in general, so we must
modify the chain complexes as follows. Since k[Z] is Noetherian and k[Z]%" is finitely

dn

generated, im 9%, | is a finitely generated submodule of k[Z]%". The preimage of a
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finite generating set of im 9%, is contained in a finitely generated free summand F
of k[Z]4+1. Notice that the homology of

F — k[Z]™ — - — k[Z]™ — 0

is still H;(G; k[Z)]) for i < n. The preimage of F'in k[G]%+! is again a finitely generated
free summand F' of k[G]4+1. Tt suffices to show that the homology of

Dyia) Qxia F— Diig) @xia) k[G]™ — - — Dyia) Qi) k[G]* — 0

vanishes in degrees at most n to show that b?k[g] (G) =0 for all i < n.

We assume that d,;; is finite and that F = k[Z]%+ and F = k[G]%™+. Since,
for every i < n, the homology H;(G; k[Z]) is finite-dimensional as a k-vector space, it
must be torsion as an k[Z]-module. Therefore, rky 0%, = dimker 67 for every i < n,
where rkz(A) denotes the torsion-free rank of the image of a k[Z]-matrix A. Now, for

each i < n, we have short exact sequences
0 — ker 07 — k[G]% — im 0” — 0
which implies that d; = dimker 67 + rky, 07 = rky 9% | + rkz 07. Hence,

. d; 0; d;_
d; = kp, ) 0; = dimp, g, ker(Dyjey = D)

> dl - rka[G] ai’
where we have used the universality of Dyg) (see Theorem 2.3.14). Thus,

rkp, Oir1 = dimp, ker(DZ[G] — Dk[G}l),

and therefore b, "“(G) = 0 for all i < n. O

Corollary 3.2.7. Let G be a RFRS group of type FP,,.

(1) Suppose k and k' are division rings of the same characteristic. Then G virtually
fibres with kernel of type P, (k) if and only if it virtually fibres with kernel of
type FP,(K').

(2) If G virtually fibres with kernel of type FP,,(k) for some division ring k, then it
virtually fibres with kernel of type FP,(Q).
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Proof. Let N be the kernel of a virtual of G to Z. By the universal coefficient,
bi(N; k) = b;(N; k') and b;(N;k) > b;(N;Q) = b;(N). The corollary then follows
from Theorem 3.2.6. O

Note that Corollary 3.2.7 could also be obtained via approximation results such

as [AOS24, Theorem 3.6|.

3.2.2 Simultaneous fibring

In this subsection, we will show that if G is a RFRS group of finite type that admits a
collection of virtual fibrings {¢;};c; whose kernels are, respectively, of type FP,, (k;)
for some division rings k; and integers n;, then there is a single virtual algebraic
fibration ¢ whose kernel is of type FP,, (k;) for all j € J (see Theorem 3.2.10 for a
stronger statement involving homotopical finiteness properties).

Let --- — C7 — Cy — 0 be a chain complex of free R-modules for some ring R,
with boundary maps 9;: C; — C;_1. Then H;(C,) = 0 for all ¢ < n if and only if there
are chain contractions s;: C; — C;11 for a ¢ < n, which by definition are R-module
morphisms satisfying

ide, = 041 08; + si-100;.
Let P C Z be a collection of prime numbers, and let P~'Z be the localisation of Z

at the multiplicative set generated by P. The following proposition appears in joint
work with Italiano and Kielak [FIK25, Proposition 3.6].

Proposition 3.2.8. Let G be a group of type FP,, and let x: G — R be a character.
If Hy(G; (@[G]X) =0 for i < n, then there is a finite set of primes P such that

Hi(G; P-1Z[G] ) = 0
for all i < n.

Proof. Let Cy — Z — 0 be a free resolution of the trivial Z|G]-module Z, where the
modules C; are finitely generated for each i < n. Fix bases for all of the free modules
C;; via this choice of basis, we will view the homomorphisms of free modules below
as matrices with entries in an appropriate ring. By induction on ¢, we will construct

chain contractions

—

X —— X
51 QIG] ®z1q) C; — Q[G] ®z16) Cia

X
whose entries lie in P, 'Z[G] for some finite set of primes P;, where we are viewing

the maps s; as matrices via the choice of bases for the modules C;. The proposition
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follows by taking P = P,. We will denote the boundary maps of the chain complex
9i: QIG] ®zg C; — Q[G] ®z(q) Ciz1-
When viewed as matrices via the fixed bases, they have coefficients in Z[G].

The base case is ¢ = —1, and s_; is the zero map, so there is nothing to show.

Assume —1 < ¢ < n and that we have constructed chain contractions s_1,...,8;_1

X
with entries lying in P, 1Z[G] for some finite set of primes P;_;. By assumption,
there is a chain contraction

— —

X X
0t QIG] ®z1¢1 C; — Q[G] ®z1a1 Cita

such that
dQ[G} ®2(6)Cs = 8i+1 oco;+S8;_10 81
/\X

We can write 0; = @; + o/, where &; has entries in Q[G] and o/ has entries in Q[G] ,
and

87;+1 00; + 8;—10 & = ld@aX@Z[G]C«L —A,

where A: @E]X@)Z[G] C; — @]X@)Z{q C; is a matrix over (@[E]X whose entries all have
positive support m Since @; has finitely many nonzero entries, it follows that
A has entries in P, 'Z[G] for some finite set of primes P;. Note that id—

is invertible with inverse 7 A7, and moreover that

QUG ®z0)Ci

aOA 8o(dQ[G]®[ c; aHloEi—Si,loai):O.
Then
az-i—l 00;0 ( d [G] ®26)Ci A) +8i—10 a@ - ldQ[G]X®Z[G]C¢7
X
o _ —1 . . . 71 .

so we may take s; ) (1dQ[ G 11 A)~', which has entries in P, "Z[G] , since
. . - -1 _ oo ,]

(1dQ[G] —_— A) Z]_OA . O

We pause to recall the definition of the homotopical sigma invariant, which will
be used in the proof of Theorem 3.2.10. Given a group G, recall that the character
sphere S(G) is the set of equivalence classes of non-zero characters y: G — R, where
the equivalence is given by scaling by a non-zero constant. Suppose that G is a group
of type F,, for some n > 0, and let X be a K(G,1) with compact n-skeleton. Let
X denote the universal cover of X , and let f,: X > Rbea G-equivariant height
map induced by x. For each a € R, let Xa = Jy Y([a,0]). The directed system of

spaces X, (under inclusion) is essentially k-connected if the directed limit lim wi()?a)
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is trivial for all i < k. The nth homotopical sigma invariant *3"(G) is the subset
of S(G) defined as follows: [x] €* £*(G) if and only if a choice of directed system
X, as above is essentially (n — 1)-connected (this will then imply all such choices are
(n — 1)-connected). We will use the following basic properties of the homotopical
sigma invariants, which were established by Renz in his thesis where he introduced

the concept.

Theorem 3.2.9 (|[Ren88, Satz A and Satz C|). Let G be a group of type F,,.
(1) *3(G) is open in S(G).
(2) If x: G — Z is an epimorphism, then ker x is of type F,, if and only if [+x] €*
X(G).

We are now ready to prove the simultaneous fibring theorem.

Theorem 3.2.10. Let {k;};cs be a set of division rings, and let G be a RFRS group of
finite type. Suppose that G admits virtual algebraic fibrations ¢ and ¢, with kernels
of type F,, and of type FP, (k;) for each j € J, respectively. Then there exists a
finite-index subgroup H < G and an epimorphism x: H — 7Z such that ker(x) is of
type Fp, and of type FP,, (k;) for all j € J.

Proof. Let S be the set of non-negative integers p such that there exists at least one
field k; of characteristic p. Let n = c¢d(G); we may then assume that m,n; < n
for all j € J. For each p € S, let n, be the maximal integer n; such that k; is of
characteristic p. We will prove that there exists a virtual algebraic fibration y with
kernel of type F,, and of type FP, (F,), where Fy := Q, which implies the result.

By passing to a finite-index subgroup if necessary, assume that ¢: G — Z is
a fibration with kernel of type F,,. If S = &, then we are done. Otherwise, let
| = max{n, : p € S}. By Corollary 3.2.7, this implies that G admits a virtual fibration
¢ virtually fibres with with kernel of type FP,;(Q), and therefore bl(?)(G) = 0 for
1 < I. By Theorem 3.2.2, there is a finite-index subgroup H < G and an antipodally
symmetric open set U C S(H) such that U O S(G) such that Hi(G;(QT[E]w) =0
for all » € U. The fact that ker p|y is of type F,, means that [¢|g] and [—¢|u]
are contained in the mth homotopical sigma invariant *¥(H), which is introduced in
[Ren88]. The main feature of the invariant we will use is that it is open [Ren88, Satz
Al in S(H). This, combined with the fact that U D S(G) > ¢|y implies that we can
choose a new map @o: H — 7Z whose kernel is of type F,, and of type FP;(Q). By
Proposition 3.2.8, there is a finite set of primes P such that ker(yy) is also of type
FP,(P~'Z).
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Consider the (finite) set P NS = {p1,...,px}. We will prove by induction on
k that there is an epimorphism ¢y : Hp — 7Z such that ker(yy) is of type F,,, type
FP;(P~'Z), and type FP,, (F,,) for each i € {1,...,k}, and where Hy < H is a
subgroup of finite index. If £k = 0 (i.e. if P NS = &), then there is nothing to
show. Assume that we have proven the claim when P N S contains k£ — 1 primes.
By Corollary 3.2.7, we know that G virtually fibres with kernel of type FP, (Fp,),
and therefore 652)(Hk_1;15'pk) = 0 for all © < n,,. Thus, Theorem 3.2.2 gives the

existence of a finite-index subgroup Hy < Hjy_; and an open set Uy C S(Hj) such

— (4
that U, O S(Hy—1) and H;(Hy;F, [Hx] ) = 0 for all ¢ € U,. By the inductive

hypothesis, there is an algebraic fibration ¢y _1: Hi_1 — Z with kernel of type F,,,
type FP;(P~'Z), and type FP,,, (F,,) for eachi € {1,...,k—1}, and therefore ¢y 1|,

lies in the open subset

k—1
*S(Hy) N ﬂzg;’:j(ﬂk;ﬂ?pi) C S(Hy).
=1

Because U D S(Hj_1), we may choose a character ¢: Hj, — Z such with kernel of
type Fy,,, type FP;(P~'Z), and type FP,, (F,,) for each i € {1,... k}.

There is a ring homomorphism P~'Z — F, for every p ¢ P. Thus, ker(py) is also
of type FP,(F,) for each p ¢ P. Thus, Let x = ¢;. Then x = ¢y is as desired. H

Corollary 3.2.11. Let G be a RFRS group of type FP. The following are equivalent:
(1) There is a finite-index subgroup H < G and an epimorphism p: H — 7 whose
kernel is of type FP(k) for all fields;
(2) G is k-L*-acyclic for every field k.

In [IMM24], Italiano-Martelli-Migliorini gave an example of a hyperbolic (cusped)
7-manifold M7 whose fundamental group algebraically fibres with a finitely presented
kernel. The manifold M7 is constructed using reflections of a right-angled hyperbolic
polytope, and therefore its fundamental group is a subgroup of a right-angled Coxeter
group. It follows that mi(M7) is virtually RFRS, and it is clearly of finite type. Since
71 (M7) is also a (non-uniform) lattice in PO(7,1), all of its L2-Betti numbers vanish.
Theorem 3.2.3 thus implies that 7 (M7) virtually fibres with kernel of type FP(Q).

Combining these observations with Theorem 3.2.10, we obtain the following corollary.

Corollary 3.2.12. There is a finite-volume cusped hyperbolic 7-manifold whose fun-
damental group virtually algebraically fibres with a finitely presented kernel of type

FP(Q).
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Chapter 4

On the cohomological dimension of
normal subgroups

The material in this chapter is taken from the articles [Fis24b| and [FK24], and from

unpublished work with Séanchez-Peralta.

4.1 Virtually free-by-cyclic RFRS groups

In the first section of this chapter, we give a short proof the fact that finitely presented
RFRS groups of cohomological dimension two are virtually free-by-cyclic if and only if
their second L2-Betti number vanishes. The author is very grateful to Andrei Jaikin-
Zapirain for communicating a simplification of his original argument, without which
the proof would be far less elegant. A generalisation of the following result will be

given in Theorem 4.3.9.

Theorem 4.1.1. Let G be a finitely presented RFRS group of cohomological dimen-
sion at most two. Then G s virtually free-by-cyclic if and only if bé2)(G) = 0.

Proof. A free-by-cyclic group has vanishing second L2-Betti number by, for instance,
[Gab02, Théoreme 6.6] (see also Theorem 2.5.5), and therefore so do virtually free-by-
cyclic groups. Thus, assume that b5 (G) = 0. By Proposition 2.5.4(iii), we have that
H?*(G; Dgjg)) = 0, and thus the same argument as in the proof of [Kie20b, Theorem
5.2] yields a finite-index subgroup H < G and an epimorphism y: H — Z such that
H2(H; QUH] ) = 0.

We will prove that N := ker(x) is free by proving that it is of cohomological
dimension one and appealing to the Stallings—Swan Theorem [Sta68, Swa69|. Let M

be an arbitrary right Q[N]-module, let t € H map to a generator of H/N = Z, and
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denote the coinduced module of M by >
infinite support). By Shapiro’s Lemma, it will suffice to show that

iz Mt" (where we allow the sums to have

H*(H; Y Mt') = 0.

i€EZ

Consider the modules

M= {Zmiti : mieM} and M := | {th : mieM}

nezZ \ izn neZ \i<n

. —
of 3., Mt'. Note that M*X is a Q[H] *_module. By [Bro94, Proposition VIIIL.6.8]
and the fact that H is finitely presented,

—+
H2(H; M) = H(H; QUH] ) @ e M = 0.

The long exact sequence in the cohomology of H associated to the short exact

sequence of coefficients

0 — M &g QIG) — MY & M — Y " Mt' — 0

€7

contains the portion

0 =H*(H; M) @ H*(H; M) — H*(H; Y Mt') — H*(H; M @qv Q[H]) =0,

1€EZL

and therefore H*(H; Y., Mt') = 0, as desired. O

i€Z
Remark 4.1.2. As we will see below, the assumption in Theorem 4.1.1 that G be
finitely presented is not necessary; it is sufficient to assume that G be finitely gener-
ated. This is because if G is of cohomological dimension two and its second L?-Betti
number vanishes, then G is homologically coherent by [JZL23, Theorem 3.10|. In
particular, if GG is finitely generated, then it is of type FP5, and this is all that was

actually needed in the proof.

4.2 The invariant Malcev—Neumann rings of Okun
and Schreve

We now move away from RFRS groups and study residually poly-Z groups (recall that
a finitely generated group is RFRS if and only if it is residually (poly-Z and virtually
Abelian) by Theorem 2.4.2), with the aim of proving a generalisation of Theorem 4.1.1
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in this class. Before doing this, we must recall a construction of Okun and Schreve
from [OS24], where they give a simplification of Kielak’s original description of the
Linnell division ring of a RFRS group in terms of Novikov rings.

In this section and in what follows, an order < on a group is a total bi-invariant
ordering (these are often called bi-orders). If an order is one-sided, then we will
specify it.

Consider the following general set up. Let I be a group, let k be a field such that
Dy exists, and suppose that N < G is a pair of normal subgroups of I' such that
the quotient G/N is orderable and amenable. For each order < on G/N, there is a
representation

t<: Dyic) = Dyny < G/N.

This is because the division closure of k[G] in Dyn) *< G/N is Hughes-free. If R C
Dy is a I-conjugation invariant subring, then the corresponding inwvariant Malcev—
Neumann ring is the subring of Dy consisting of the elements whose representations

under ¢ lie in R *x. G/N. More precisely, the invariant Malcev—Neumann ring is
denoted and defined by

Rxx G/N := mbzl(R x. G/N),
<
where the intersection in Dyg) is taken over all orders on G//N.
Now suppose that G is a group with a residual normal chain G =Gy > Gy > ...
such that each successive quotient G; /G, is orderable and amenable. Since orderable
groups are locally indicable, G is residually (locally indicable and amenable), and

therefore Dy exists and is universal by Theorem 2.3.14. For each j > 0, define
R =k[G;] and Ri=R:"#xG;/Giy for0<i<j

by reverse recursion on ¢. The rings R{ are the inductive rings associated to the
residual chain (G;);>0. The main result of Okun—Schreve is the following, which gives

a description of Dy¢) in terms of the inductive rings of (G;)>o.
Theorem 4.2.1 (|0S24, Theorem 5.1]). With the above notation, Dyjay = U, B5-

As a consequence of this description, we obtain the following result that will be

used below.

Proposition 4.2.2. Let G be a residually (locally indicable and amenable) group,
let k be a field, let G = Gy > Gy > ... be a normal residual chain such that each
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quotient G;/Gy1 is orderable and amenable, and denote by R; the inductive rings
corresponding to this chain. Let P, be a chain complex of projective k|G|-modules such
that P, is finitely generated for somen € Z. If H"(Py; Dyig)) = 0, then H" (P; R?) =0

for some sufficiently large integer j.

Proof. We may assume that P, is a chain complex of free k[G]-modules such that
P, is finitely generated. Indeed, let @),, be a projective module such that P, ® @, is

finitely generated and free. The cohomology of the chain complex
= n+2_>Pn+IEBQn+1 Hpn@Qn_) n—1—"7"""

(with any coefficients) is isomorphic to that of P,. By iteratively taking free com-
plements of the other projective modules in the chain complex, we may assume that
they are all free, and that P, is finitely generated.

We fix some notations and terminology that will be used in the rest of the proof.
If M is a k[G]-module, then we denote Homy (M, Dyj)) by M*. For each free k[G]-
module P;, fix an isomorphism P; = P 7, k[G]. We say that a submodule F; < P,
is a direct summand if it corresponds to @, k[G] for some J; C J;. Note that this
is more restrictive than simply being a factorl in a direct factor in an abstract direct
sum decomposition of P;.

We now focus on the portion P,.; — P, — P,_; of the chain complex. We want
to choose finitely generated direct summands F,+; < P,4+1 so that the cohomology of
i
generated, its image in P, lies in a finitely generated direct summand F,,_; < P, 4.

«— B « F)_, coincides with that of P, , «+ P; < P;_,. Since P, is finitely

Then the images of the maps P ; — Py and F_; — P} coincide, since every map
on F,,_; extends to one on P, ;. Note that this did not have anything to do with the
choice of coefficients in Dyq).
Since P,.; is the directed union of its finitely generated direct summands, it
follows that
ker(P: — Pr)) = N ker(P: — Fr.)).

Fn+1 an-Q—l
f.g. direct summand

Because Dy is a division ring, each ker(P; — Fy, ) is a finite-dimensional Dj¢-
module and every chain of such modules must have a minimal element (under inclu-

sion). By Zorn’s Lemma, there is a minimal such Dy g-module, and therefore

ker(P; — P;H) = ker(P; — F;H)

48



for some finitely generated direct summand F,,; < P,y;. Let F,, = P,. Then the
degree n cohomology of of F;, | « F) « F_; coincides with that of P ; « P «
P :—17

The coboundary maps of F; , < Fy < F_, are maps between finitely generated

as desired.

modules over Dyq), which we identify with finite matrices (note that these matrices
will have entries in k[G], since they are induced by maps of free k[G]-modules). Since

Dyq is a division ring, for 1 = n — 1,n,n + 1 there are invertible matrices
M;: Homyg)(Fi, Dric)) — Homye)(Fi, Diiay)

that put the coboundary maps into Smith normal form. By Theorem 4.2.1, there is
some j = 0 such that every entry of each matrix ]\414jEl has coefficients in R?. Thus,

the matrices MZ-jEl put the cochain complex
Homy ) (Frs1, RY) < Homyg)(Fp, RY) < Homyg)(F,-1, RY)

into the same Smith normal form, and therefore its degree n cohomology vanishes.

To conclude, note that Homk[G](Fn_l,R?) and Homk[g](Pi_l,Rg) have the same

image in Homgg)(P,, R)). The kernel of

Homyc)( Py, RY) — Homyg)(Pas1, RY)
is contained in that of

Homyq) (P, R;) — Homyg) (Froy1, R?),

so we conclude that H"(P,; R}) < H"(F,; RY) = 0, as desired. O

4.3 Dimension drop in residual chains

4.3.1 Dimension of normal subgroups

We give an explicit definition of the weakest finiteness condition to which our argu-
ments will apply. We will require groups to be of finite cohomological dimension, and

to admit a projective resolution which is finitely generated in the top dimension.

Definition 4.3.1. Let G be a group and R be a ring. We say that G is of type
FTP,(R) if the trivial R[G]-module R admits a projective resolution

0O—PFP,— - —-P—-F—R—0
where P, is finitely generated.
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Note that if G is of type FP(R), then G is of type FTPcq, () (R), and if G is of
type FTP,,(R), then cdgr(G) < n.
Let N < G be a pair of groups, and let M be a right R[N]-module for some ring

R. The coinduced module is
Coind§ (M) = Hompn (R[G], M) = )~ Mt
teT

where 7T'is a right transversal for N in G. By an abuse of notation, we will often denote

the coinduced module by . NG Mt, where the choice of transversal is implicit.

Lemma 4.3.2. Let R be a ring and let 1 — N — G — @) — 1 be a short exact
sequence of groups such that G is of type FTP,(R), and let M be an R[N]-module.
If there exist collections of R[G]-rings {S;}icr, Si-modules {L;}icr, and R[G]-module
homomorphisms {L; — 3. Mt}icr such that the induced map

By
iel teQ

is surjective and H"(G;S;) =0 for alli € I, then H"(N; M) = 0.

Proof. Fix a projective resolution 0 — P, — --- — Py — R — 0 of the trivial R[G]-

module R such that P, is finitely generated. We will prove that H"(N, M) = 0 by a

series of reductions.

Claim 4.3.3. It is suffices to show that H"*(G; .o Mt) = 0.
Proof. This is immediate by Shapiro’s Lemma. o

Claim 4.3.4. [t is suffices to show that H"(G;@,.; L;) = 0.

iel
Proof. Let K be the kernel of the surjection @, ; L; — ZtEQ Mt. Then the long
exact sequence in cohomology associated to the surjection contains the portion
H"(G; @Ll) — H"(G; ZMt) — H"™(G; K),
iel teQ

where K is the kernel of the surjection. But cdr(G) < n, so H"(G; @, Li) surjects
onto H"(G; >, Mt), which proves the claim. o

Claim 4.3.5. [t suffices to show that H"(G; L;) = 0 for all i € I.
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Proof. Because P, is finitely generated, there is a natural isomorphism

B Hompiey (P, L) = Hompgy (P, P Li).

iel iel
Thus, there is a commutative diagram

P, Hompq(Po; L) —— @, H"(G; L;) —— 0

{ |

HOIDR[G](P”;®1»€I L1> e Hn(G, @ie[ Lz) — 0

with exact rows. This immediately implies that the rightmost vertical map is an

epimorphism, and thus proves the claim. o

Claim 4.3.6. The natural map H"(G; S;) ®s, L; — H"(G; L;) is surjective for all
1€ 1.

Proof. Because P, is finitely generated, there are natural isomorphisms

Hompq)(F, Li) = Hompig) (P, R
& HOmR[G] (Pn, R
= HomR[G](Pn, Sz) ®s; Li.

and because tensoring is right exact, the commutative diagram

HOIHR[G](Pm Sz) ®Si Lz — Hn(G, Sz) ®Si Lz — 0

| |

Hom g ( P; Li) ———— H(G; L;) —— 0

has exact rows. Therefore the rightmost vertical map is surjective, which proves the

claim. o

The conclusion H"(N, M) = 0 then follows immediately from the claims, since we
assume H"(R; S;) =0 for all i € I. O
4.3.2 Residually poly-Z groups

A group G is residually poly-7 if it has a residual normal chain G = Gy > G > ...
such that each quotient G/G; is poly-Z. If G is countable, then this is equivalent to
the usual definition of a residual property, namely that every element g € G ~ {1}

survives in a poly-Z quotient of G.
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Lemma 4.3.7. If G is a residually poly-Z. group, then it admits a residual normal
chain G = Gy = Gy > ... such that each consecutive quotient G;/G;41 is free Abelian
of finite rank.

Proof. Let G = Hy > Hy; > ... be a residual normal chain such that each quo-
tient G/H; is poly-Z. We will refine (H;);>0 so that it has free-Abelian consecutive
quotients.

Fix some i and consider the quotient H;/H;,1, which is poly-Z. Therefore there

is a characteristic series

1=0Q, <Qna<---<Q1<Qo=H;/Hi 1

such that each consecutive quotient is free-Abelian. Indeed, one inductively defines
Qo = H;/H;y; and Q41 = ker(Q; — Hi(Q;;Q)). Lifting the groups @; to G, one
obtains a refinement of (H;);>o whose successive quotients are free Abelian and such
that all the subgroups are normal in G (this follows from the fact that the groups @;

are characteristic in H;/H;1). O

Lemma 4.3.7 shows that residually poly-Z chains admit normal residual chains for
which we can define inductive rings as in Section 4.2. For the remainder of this subsec-
tion, fix a residual normal chain G = Gy > G; > ... where the consecutive quotients
G;/G;y are free Abelian, and let R; denote the inductive rings corresponding to this
residual normal chain.

Fix an integer n and consider the poly-Z quotient G/G,,. It has a subnormal
series 1 < Gp,_1/G, < -+ < Go/G,, = G/G,, with free-Abelian successive quotients.
For each choice of order on each G;/G; 1, there is an induced lexicographic right-
invariant order on G/G,, (if the subnormal series were central, then the lexicographic
order would be bi-invariant). Let M be an arbitrary k[G,]-module, and consider the

coinduced module
Coindg (M) =Y Mty o Y Mt, ...t
teT to€To tn_1€TH_1

where T; is a transversal for G;,1 in G; and T'=T,,_; - -- Ty is a right transversal for
G, in G. If < is a right-invariant order on G/G,,, then we denote by M *. G/G,
the right k[G]-module consisting of the elements (myt) such that {¢ : m; # 0} is

well-ordered under <.

Lemma 4.3.8. If <; is an an ordering on G;/G;11 for each i € {0,...,n — 1} and
< 1is the induced lexicographic right-invariant order on G /Gy, then M x. G/G,, has

a natural right R2-module structure extending the k[G]-action.
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Proof. We will prove that M x. G;/G, is an R!-module by reverse induction on i.
The base case is when ¢ = n, in which case there is nothing to show, since R}’ = k[G),]
and M . G, /G, = M.

Suppose that M *. Gy,1/G, has a right Ri™!-module structure. By the definition
of the lexicographic order, M x. G;/G,, coincides with the submodule

(M *< Gi-l—l/Gn) *<, Gi/Gi-H C Z(M *< Gi+1/Gn)S'

SET,‘

The action of R}, can now be defined as follows. Let

a€ R, =R %xG;/Gyyy and z = sts € M_,(G;/G.,),
seT;
and let >, . 7:t be the image of o in Rt x_. G;/Gi11 under the representation
L<,. By an abuse of notation, we now identify o with this image, and thus speak of
the support of a. If s, € T}, let g5, € Gi+1 and u,s € T} be the unique elements such
that st = g,us,. Put

T = Z ((ms . srts_l)g&t) Ut

s,teT;

This is well defined, because srs™t € R as R.M is G-conjugation invariant, and

1 is defined by our inductive hypothesis, and thus

therefore the action mg - srys™
(myg - srys71)gsy is defined since M_(G,,1/G,,) is a right k[G;41]-module. Moreover,
since x and « both have well-ordered supports with respect to the biorder <;, we have
that supp(z) supp(«) has well-ordered image in G;/G, 1 and moreover that there are
only finitely many pairs (s,t) € supp(x) x supp(«) such that stG;; = g for any given
g € G;/Gi11. Tt is now not difficult to check that this defines an R!-module action

extending the k[G;]-action. O

We are now ready to prove the main result of this chapter, which is an extension
of Theorem 3.2.3.

Theorem 4.3.9. Let G be a residually poly-Z group of type FTP,,(k) for some division
ring k. The following are equivalent:
(1) b2 (G: k) = 0;
(2) If G = Gy = Gy = ... is any normal residual chain such that G /G; is poly-Z
for each i, then cdi(G;) < n for sufficiently large i.
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Proof. Suppose that bg)(G; k) = 0 and fix a residual normal chain G = Gy > G > ...
such that each quotient G/G; is poly-Z. By Lemma 4.3.7 and by possibly refining
the residual chain, we may also assume that the consecutive quotients G;/G;;; are
finitely generated free Abelian.

By Proposition 4.2.2, there is some integer i for which H"(G;RY) = 0. We
claim that cdi(G;) < n. Let M be an arbitrary k[G;]-module; we will prove that
H"(G;; M) = 0. Consider the normal series

1<Gin/Gi < <G /G < Gy/Gy = G/G,

whose consecutive quotients are finitely generated free Abelian. In each consecutive
quotient Gj/Gj+1, choose a preferred basis (as a free Abelian group). If G;/G;41 has
a rank d;, then this choice determines 2% lexicographic orders on G;/G,;;. Hence,
if G/G; has Hirsch length h, then we have identified N := 2" lexicographic right-
invariant orders on G/G;, which we denote by <y,...,<y.

For each [ € {1,..., N}, there is an inclusion M *., G/G; — ZteG/Gi Mt, and

these inclusions induce a surjection

N
P M, G/G— > Mt
=1

teG/G;

By Lemma 4.3.8, each k[G;]-module M *., G/G; carries a natural R)-module struc-
ture. Thus, all the conditions of Lemma 4.3.2 are met, and so we conclude that
H"(Gy; M) = 0, as desired.

Conversely, if cdi(G;) < n for some i, then b (Gy; k) = 0. Since the quotient
G/G, is poly-Z, we conclude that b (G; k) = 0 by Theorem 2.5.5. O

We now specialise the result to dimension 2, where we obtain some of the strongest

consequences.

Corollary 4.3.10. Let G be a finitely generated residually poly-Z group satisfying
cdi(G) < 2 for some field k. Then ng)(G; k) = 0 if and only if G is free-by-(poly-7).

Proof. Suppose that bg)(G; k) = 0. By [JZL23, Theorem 3.10|, G is homologically
coherent and therefore is of type FPy(k). In particular, G is of type FTPy(k), and
hence the claim follows from Theorem 4.3.9 and the Stallings—Swan Theorem [Sta68,

Swa69]. The converse is again an immediate consequence of Theorem 2.5.5. [
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There is an increasing number of results relating the vanishing of the second
L?-Betti number with coherence of groups of cohomological dimension 2 (see, e.g.,
[KKW22, K1.24, JZ1.23, Wis20al). In fact, Wise conjectures that the two phenomena
should be equivalent (see [Wis22b, Conjecture 2.6] and [Wis20a, Problems 9 and 11]).
We offer more evidence for one direction of this conjecture below. We thank Marco
Linton for communicating an argument that free-by-(poly-Z) groups of cohomological
dimension 2 are coherent. If the reader is only interested in RFRS groups, then they
can appeal to Theorem 4.1.1 and the result of Feighn—Handel stating that free-by-
cyclic groups are coherent [FH99| instead. Recall that a ring is left (resp. right)
coherent if all of its finitely generated left (resp. right) ideals are finitely presented.
A group algebra is left coherent if and only if it is right coherent, so we drop the
left /right specification.

Corollary 4.3.11. Let G be a residually poly-Z group satisfying cdy(G) < 2 for some
field k. If bg)(G; k) =0, then G and k|G] are coherent.

Proof. 1t suffices to assume that G is finitely generated, since bg2)(H k) = 0 for all
subgroups of H < G by |[FM23, Lemma 3.21|, and a group G (resp. group algebra
k[G]) is coherent if and only if H (resp. k[H]) is coherent for all finitely generated
subgroups H < G. Hence, we can assume that G is free-by-(poly-Z). We will need
the following claim, whose proof is essentially identical to that of [JZL23, Theorem
3.4].

Claim 4.3.12. Let G be a free-by-amenable group. If Dyiq) exists, then it is of weak
dimension at most one as a k[G]-module, meaning that Torg[G}(M, Dyicy) for all right
k[G]-modules M.

Proof. By |Tamb54|, we have Dy = Ore(Dyp * G/F'), where F is a free normal
subgroup of G such that G/F is amenable. Since Ore localisation is a flat functor, it
suffices to prove that Dyp* G/ F is of weak dimension at most one as a k[G]-module.

Let M be an arbitrary right k[G]-module. By Shapiro’s Lemma, we have
Tors (M, Dy * G/ F) = Tors ™ (M, Dyyy) = 0
since cdg(F') < 1. o

In particular, Dyq is of weak dimension at most one as a k[G]-module, since G
is free-by-(poly-Z). Hence, k[G] is coherent by [JZL23, Corollary 3.2].

Finally, we show that G is a coherent group. As G is free-by-(poly-Z), we prove
coherence of G by induction on the Hirsch length of the poly-Z quotient. If the
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Hirsch length is 0, then G is free and therefore coherent. Now suppose that the
Hirsch length is n > 0. Then G splits as an ascending HNN extension of a group H,
which is free-by-(poly-Z of Hirsch length n — 1). By induction, H is coherent. By
[JZ1.23, Theorem 1.3|, it suffices to show that G is homologically coherent, i.e. that
every finitely generated subgroup of G is of type FPy(k). But this follows from the
fact that k[G] is coherent. O

4.3.3 Vanishing second homology, parafree groups, and a ques-
tion of Wise

In [Wis20b|, Wise proved that if G is a finitely presented RFRS group, then ng)(G) <
ba(G). Jaikin-Zapirain subsequently showed that this is a special case of universal-
ity; more precisely, he showed that if G is a group of type FP2(Q) such that the
Linnell division ring is universal, then bg)(G) < b(G). We begin by proving that
the assumption that G' be of type FP5(Q) is not necessary. In particular, this result
applies to RFRS groups by Theorem 2.3.14. We refer the reader to the background
on specialisations in Section 2.3.4, which will be used in the proof of the following

proposition.

Lemma 4.3.13. Let G be a finitely generated group, let k be a field, and let Dy and Dy
be k[G]-division rings such that there is a specialisation p: Dy — Ds. If cdi(G) < 2,

Proof. There is nothing to show if by(G; Ds) = 00, so we assume by(G; Dy) < oo. Let
0 — P, — P, — Fy — k — 0 be a projective resolution of the trivial k[G]-module £,
where Py and P; are finitely generated free k[G]|-modules. Let D C D; be the domain
of p. Since projective modules over local rings are free by Kaplansky’s Theorem
[Kap58], there is some cardinal « such that D @) P = D% as left D-modules, and
therefore

D; Qi) P» = D; @p D Qi) QP = D

for 1 = 1,2. The assumptions that by(G;Ds) < 0o and that P is finitely generated
imply that a < oc.

Since a < 00, there is a finitely generated free k[G]-module F' and a homomor-
phism 0: F' — P, such that

Dy Qpja) F' — Dy Qpjq) P2 = Dy

is an epimorphism. By passing to a free submodule of F', we may assume that the

above map is an isomorphism. For ¢ = 1,2, the maps D; Qg F' — D; Qi) P2
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are obtained by applying D; ®p — to the map of finitely generated free D-modules
D @y F' — D Qpg) Po. But p is also a specialisation of D-division rings, so the
rank functions still satisfy rkp, > rkp, when viewed as rank functions on D by
Theorem 2.3.13. It follows that

D, @iig) F — Dy Qug) P2 = DY
is also an isomorphism, and therefore that the chain complexes
0 — D; Qg I — Di Qpia) Pr — Di Qi) Po — 0

compute the Betti numbers b, (G;D;) for both i = 1,2. Once again using the fact

that rkp, > rkp,, we have
bQ(G,Dl) :a—rkD10< Oz—l"kp28:b2(G;D2). ]
As a corollary, we solve a problem of Wise [Wis20b, Problem 6.5].

Corollary 4.3.14. Let X be an aspherical 2-complex such that 7 (X) is finitely
generated and RFRS. If by(X) = 0, then m(X) is virtually free-by-cyclic.

Proof. By Theorem 2.3.14, the Linnell division ring Doy, (x) is universal for Q[m (X)],

and therefore there is a specialisation Dy, (x) — Q. O

Our next application concerns parafree groups. A group G is parafree if G is
residually nilpotent and there is a free group F such that G and F have the same
set of isomorphism classes of nilpotent quotients. The central conjecture concerning
parafree groups is Baumslag’s Parafree Conjecture, which predicts that if G is a
finitely generated parafree group, then Hy(G;Z) = 0. The Strong Parafree Conjecture
additionally predicts that cdz(G) < 2; both conjectures are open. It is easy to see
from the definition that parafree groups are in fact residually (torsion-free nilpotent),
and in particular are residually poly-Z. It actually turns out the parafree groups are
RFRS as well [Reil5, Theorem 9.2]. Note that the assumption that G be finitely

generated is necessary in the statement of the (Strong) Parafree Conjecture.

Corollary 4.3.15. Let G be a finitely generated parafree group of cohomological di-
mension at most two. The following are equivalent:

(1) G satisfies the Parafree Conjecture;

(2) b7(G) = 0;

(3) G is virtually free-by-cyclic;
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(4) G is free-by-(free nilpotent).

Proof. (1) = (2): If the Parafree Conjecture holds, then by(G) = 0, and therefore
b (G) = 0 by Lemma 4.3.13.

(2) = (3): This follows from Theorem 4.1.1, Remark 4.1.2, and the fact that
parafree groups are RFRS.

(2) = (4): Since G is parafree, there is a (finitely generated) free group F such
that G/v,(G) = F/v,(G) for all n > 0, where 7, (G) denotes the nth term of the
lower central series of G. Note that all of the quotients F'/v, (F') are finitely generated
torsion-free nilpotent, and in particular are poly-Z. Thus, Theorem 4.3.9 implies that
Y (G) is free for sufficiently large n. But G/v,(G) = F.v,(F) is (by definition) the
free nilpotent group of rank rk(F) and of step n. Hence, G is free-by-(free nilpotent).

(3) = (1): If G is virtually free-by-cyclic, it is coherent by [FH99| and in particular
is of finite type. Moreover, because the Abelianisation of G is torsion-free, b (G; k) is
independent of the coefficient field k. Thus, we have ng)(G) = b1 (G; k) —1 by [BR15,
Corollary 8.1] and ng)(G; k) = 0 for all fields k. Hence, the Euler characteristic of G

1S

Y(G) = =bP(G) =1 — by(G; k) + bs(G3 k)

for every field k, which implies by(G; k) = 0 for all k. Because G is of finite type, this
implies that Hy(G;Z) = 0, as desired.

(4) = (1): This follows as in the previous paragraph, since we only needed the
fact that G’ was finitely presented, and this is true for finitely generated free-by-(free

nilpotent) groups of cohomological dimension at most two by Corollary 4.3.11. ]

Remark 4.3.16. It is not known whether finitely generated parafree groups are finitely
presented, let alone whether they are coherent. An immediate consequence of Corol-
lary 4.3.15 and Corollary 4.3.11 is that finitely generated parafree groups satisfying

the Strong Parafree Conjecture are coherent.
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Chapter 5

The Kaplansky Zero Divisor
Conjecture for 3-manifold groups

The purpose of this chapter is to show that torsion-free fundamental groups of 3-
manifolds satisfy Kaplansky’s Zero Divisor Conjecture. More precisely, this means if
G is torsion-free and is the fundamental group of some 3-manifold, the group algebra
k[G] is a domain for any field k. This will be achieved by proving that k[G] is a
subring of a division ring whenever G is torsion-free. The material from this chapter
is taken from the article [FSP23] of Sanchez-Peralta and the author.

5.1 Graphs of rings

In this section we introduce graphs of rings and prove some of their basic properties.
The amalgamated product of rings over a common subring has been studied exten-
sively (see, for instance, [Coh06]) and the HNN extension of rings was defined and
studied by Dicks in [Dic83]. The upshot of this section is Corollary 5.1.11, which
states that crossed products of graphs of Hughes-free embeddable groups embed in a
division ring.

We define graphs of rings in complete analogy with graphs of groups. We take
graphs to be connected and oriented, with € denoting the same edge as e but with the
opposite orientation. Every edge e has an origin vertex o(e) and a terminus vertex

t(e) such that o(e) = t(€). Graphs are allowed to have loops and multiple edges.

Definition 5.1.1 (The graph of rings with respect to a spanning tree). Let I" be a
graph and let 7" be a spanning tree. For each vertex v of I' we have a vertex ring R,
and for each edge e of I' we have an edge ring R. and we impose R, = Rz for every

edge e. Moreover, for each (directed) edge e there is an injective ring homomorphism

29



e Re — Ryey. Then the graph of rings %rr = (R, R.) is the ring defined as
follows:

(1) for each edge of e of I" we introduce a formal symbols t.;

(2) Zr.r is generated by the vertex rings R, and the elements t.,¢, ! and subjected

to the relations
o tot. =tttz =1,
o tope(r)te = @o(r) for all r € R;
e ifec T, thent, =1.

Define %} in the same way as Zr r, except drop the relations t, = 1 if e € T.

There is a canonical quotient map 7p: % — Zrr.

Definition 5.1.2 (The based graph of rings). We retain all the notations of Defini-
tion 5.1.1. Fix a base vertex vy € I'. We say that an element of %} is a loop element
if it is of the form rote,rite, - - - te, 7, and

(1) 70 € Ro(ey)
(2) 75 € Ryey foralll i<n;
(3) t(e;) =o(ejyq) forall 1 <i<n—1;

(4) o(er) = t(en) = vo.
We then define Zr,, to be the subring of %} generated by the loop elements. Since
the product of loop elements is clearly a loop element, %r ,, consists of the elements

of Z} that can be expressed as sums of loop elements.

Remark 5.1.3. When defining a ring with generators and relations, we are quotienting
a freely generated ring by an ideal. Thus, with these definitions, we of course run
the risk that %y, Zr r, or Z%r,., is zero, and that we have lost all information about
the vertex and edge rings. This never happens in the graph of groups construction,
but not much can be said for a general graph of rings. In the situations of interest,
however, we will see that this does not happen, and that the vertex rings inject into

the graph of rings (see Lemma 5.1.5 and Proposition 5.1.9) as one would hope.
The following result is the analogue of [Ser77, Ch. 1, §5.2, Proposition 20]. In

particular, it implies that the isomorphism types of %r r and %r,, are independent
of the choices of T" and vy, respectively. We will thus simplify the notation and denote

the graph of rings by Zr.

Proposition 5.1.4. Restricting the canonical projection mp: X\ — Hrr induces an

isomorphism o = 7TT’¢%F’UO : Hrwy — Hror.
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Proof. The proof is analogous to that of [Ser77, Ch. 1, §5.2, Proposition 20|, to which
we refer the reader for more details. For every vertex v of I', let ¢, = €1 --- e, be the
geodesic path from vy to v in T" and let v, = ¢, - - - £, be the corresponding element
of Z;. Put o' = ~y,xy,; ! whenever x € R, and t/ = %(e)tev;(el) for every edge e of T.
It is straightforward to show that the assignment (z) = 2’ and S(t.) = t, induces a
well-defined homomorphism 3: % — %r ,, such that aof =id and foa =id. [

When G decomposes as graph of groups ¢, the crossed product k* G decomposes

as a graph of rings in the expected way.

Lemma 5.1.5. Let % = (G,,G.) be a graph of groups with fundamental group G
and let R be a ring. Then any crossed product R« G decomposes as a graph of rings
Yr = (R Gy, R*G,.), where the edge maps R x G, — R * Gy are induced by the
edge maps G — Gy of the graph of groups.

Proof. Let vy be a vertex in I'; we work with the based graph of rings presentation
for Zr. Define a homomorphism a: R * G — Zr as follows. Write ¢ € G as a
loop element gie1gees - - €,9, and put a(g) = gie1g2es - - - €,9, € Zr. This defines
a homomorphism of G into the unit group Z[, so « extends to a homomorphism
R x G — Zr by R-linearity.

On the other hand if we put B(gie1g2€2+ - €,9n) = g1€192€2- - €ngn € R *x G
for a loop element gieigses---e,9,, We also obtain a well-defined homomorphism
B: %r — RxG, since the relations in Zr hold in Rx G (by the based graph of groups
presentation for G). O

Definition 5.1.6. Let % = (G,,G.) be a graph of torsion-free groups with funda-
mental group GG and fix a division ring k£ and a crossed product k * G. Then % is
called D-compatible if the following conditions are met:
(1) For every vertex v of ', there is an embedding k * G, < D,, where D,, denotes
a division ring.
(2) Let D, denote Div(gpe(k*Ge), Dye)). For all vertices v and all edges e such that
t(e) = v, any set of right coset representatives of ¢;)(G.) in G, is left-linearly
independent over D..

(3) D, = D: as k x G -division rings for every edge e of T'.

Remark 5.1.7. Condition (2) is automatically satisfied if the embeddings k*G,, — D,
are Linnell. If, in addition, the vertex groups are locally indicable, then condition (3)

is automatically satisfied by the uniqueness of Hughes-free division rings [Hug70].
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In what follows, we will usually (by an abuse of notation) denote the fundamental
group of a graph of groups % = (G,,G.) by %; a choice of base vertex in I" will
always be implicit. If % = (G,, G.) is a D-compatible graph of groups, then we can
form the graph of division rings on I' with vertex division rings D, and edge division
rings D,; we denote it by 2%r. Our next goal is to prove that k x ¢ embeds into

2% . For this, we will need the following normal form theorem.

Theorem 5.1.8 ([Dic83, Theorems 34(i) and 35(i)]).

(1) Let B and C be rings containing a common subring A such that B (resp. C') is
free as a left A-module with basis {1} U X (resp. {1} UY ). Then the amalgam
Bx, C is free as a left B-module on the set of sequences of strings y,x1ysTso - - -
with x; € X and y; € Y not beginning with an element of X and including the
empty sequence.

(2) Let Bxa be an HNN extension of rings with stable letter t such that B is free as
a left A-module under both edge maps, with bases {1} U X and {1} UY. Then
Bx 4 is free as a left B-module on the set of linked expressions constructed from

oXa o Xt tu{t'} e
DtYU{t} ® otYtto

not beginning with an element of X or Xt~! and including the empty sequence.

A linked expression is a word ajasas - -+ such that if a; belongs to a set with a @
(resp. ©) to its right, then a;,; must belong to a set with a @ (resp. ©) to its left; we
refer to [Dic83| for a precise definition. Note that (1) is deduced from earlier work of
Cohn [Coh59| or [Ber74].

In the proof of the following lemma, all transversals that appear are assumed to

contain the relevant group’s identity element.

Proposition 5.1.9. Let k be a division ring and let 9 = (G, G) be a D-compatible
graph of groups (for some fized crossed product k x % ). Then the natural map

k * gp — .@gf‘
15 an embedding.

Proof. Write G = 9. First assume that I' is finite. We simultaneously prove the
following pair of statements by induction on the number of edges in I

(1) k*x% — 2% is an embedding, and

(2) for any vertex v of I', there is a right transversal T of G, in G such that the

image of T" in Y9y is linearly independent over D,,.
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If I" has no edges, then it consists of a single vertex and the claims are trivial. Now
suppose that I' has at least one edge. Let v be a vertex of I' and let e be an edge
such that o(e) = v. Assume that I' \ e is disconnected with connected components
I'y and I'y, where v € I'y. By induction, k * 4, embeds in 2%, and there is a right
transversal T of G, in ¢, which remains linearly independent over D,. Let S; be a
right transversal for (the image of) G, in G,. Then S is also linearly independent
over D, in D, by D-compatibility. Thus, S177 is a right transversal for G, in ¢, and
it is linearly independent over D, in %, .

Moreover, we also have that k x 4, embeds in 29r,. By a similar argument,
there is a transversal T5 for Gy() in %, and a transversal Sy for G, in Gy such that
T and SyT5 are linearly independent over Dy and D, respectively.

Let X be the set of alternating expressions of the form y,ziysxs--- with z; €
S1Ty and y; € ST not beginning with an element of S;7;. Note that X is a right
transversal for ¢, in 4. By Theorem 5.1.8(1), we have that k x G embeds in 29y
and X is linearly independent over 2%,. To complete the induction, note that 77X
is a right transversal for GG, in %r; so by linear independence of T} and X over D,
and Y9, respectively, we conclude that 77 X is linearly independent over D,.

The case where I' \ e is connected is proved similarly using Theorem 5.1.8(2); we
omit the proof.

We now drop the assumption that I' is finite. For a contradiction, assume that
kx4 — 2%t is not injective. Let x be a non-trivial element of the kernel and let I C
I' on which x is supported. The image of x in 2% will be a finite linear combination
of relators, which are supported in some finite subgraph I'” C I'. Enlarging I and
I'” if necessary, we may assume that IV = I"”. But then z is a non-trivial element of
the kernel of k x 4 — 9%, a contradiction. O

Recall that a left free ideal ring is a ring all of whose left ideals are free of unique
rank. A left semifir is a ring all of whose finitely generated left ideals are free of
unique rank. The semifir property is left-right symmetric, so we drop the left-right
specification when discussing these rings and simply refer to them as semifirs. The
main results of this section now follows easily from a powerful result of Cohn stating
that semifirs embed into (universal) division rings, and from results of Cohn and
Dicks, which together imply that a graph of semifirs with division ring edge rings is

again a semifir. These results are cited in the proof of the following theorem.
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Theorem 5.1.10. Let k be a division ring and let % = (G,,G.) be a D-compatible
graph of groups (for some fized crossed product k x % ). Then k x % embeds into a

division ring.

Proof. We will prove that 29 is a semifir, namely that all of its finitely generated left
(or right) ideals are free of unique rank. The result then follows from Proposition 5.1.9
and Cohn’s theorem stating that every semifir embeds into a division ring [Coh06,
Corollary 7.5.14].

We begin with the case that I is finite. This follows by induction on the number
of edges, using the facts that amalgams of semifirs over a division ring and HNN
extensions of a semifir over a division ring are still semifirs (|Coh59| and [Dic83,
Theorems 34(ii) and 35(ii)].

If T' is infinite, then the result follows since 2%t is the colimit of the semifirs
2% with I" finite (see [Coh85, §1.1 Exercise 3]). O

Corollary 5.1.11. Let k be a division ring, let % = (G,,G.) be a graph of locally
indicable groups, and fiz a crossed product k x 4r. Suppose there is a Hughes-free
embedding k x G, — Dy.q, for each vertex v of I'. Then k x 9 embeds in a division

ring.

Proof. By Theorem 2.3.10, Hughes-free embeddings are in fact Linnell embeddings
[Grda20, Corollary 8.3]. Recall that if A < B are groups and there is a Hughes-free
embedding k x B < Dy.,p, then Div(k * A, Dy.p) is isomorphic to the unique Hughes-
free division ring Dy, 4 (this follows from the uniqueness of Hughes-free division rings
[Hug70]). Thus, ¢ is D-compatible. O

Corollary 5.1.12. Let k be a subfield of C and let % = (Gy,G.) be a graph of
(torsion-free groups satisfying the Strong Atiyah Conjecture over k). Then the group

algebra k% embeds in a division ring.

Proof. Since the vertex groups satisfy the Strong Atiyah Conjecture, kG, embeds
into the Linnell division ring D(G,). The fact that ¢4 is D-compatible follows from
the fact that if B is a torsion-free group satisfying the Strong Atiyah Conjecture and
A < B, then the division closure of kA in D(B) is isomorphic to D(A) (see either
[Kie20a, Proposition 4.6] or [Liic02, Chapter 10]). O

We conclude the section with a short application of our main result. Recall that

Higman’s group H can be defined by the presentation
{a,b,c,d | b* =b*, " =2, d° = d* a® = a?).
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It can also be realised as a square of groups with BS(1,2) vertex groups, Z edge
groups, and trivial face group. The group H was constructed by Higman in [Highl],
and it was the first example of an infinite group with no non-trivial finite quotients.
It also has an infinite simple quotient. While Higman’s group often serves as a source
of counterexamples, we will see here that it’s group algebras are quite well behaved,
at least for fields of characteristic zero.

Rivas and Triestino showed that Higman’s group acts faithfully and continuously
on R, and therefore is left-orderable and in particular R|[H| satisfies Kaplansky’s Zero
Divisor Conjecture for all domains R [RT19, Theorem A, Corollary B|. Here we show
that k[H] has the (a priori) stronger property of embedding into a division ring, at

least when k is a field of characteristic zero.

Proposition 5.1.13. Let k be a field of characteristic zero. Then k[H| embeds into

a division ring.
Proof. Indeed, note that H decomposes as H = G x4 G5, where
G1=(a,b,c), A={a,c)=F, Gy=/a,cd).

Moreover, for i = 1,2, we have that G; = BS(1, 2) %z BS(1,2) is a cyclic amalgam of
locally indicable groups, and therefore is locally indicable by a result of Howie [How82,
Theorem 4.2]. Hence, k[G;] has a Hughes-free embedding for i = 1,2 by [JZLA20,
Corollary 1.4] and therefore k[H| embeds into a division ring by Corollary 5.1.11. [

We obtain a consequence on k[H] that does not follow from the fact that it has
no zero-divisors, and requires the embedding into a division ring. A ring R is stably
finite if for any pair of square matrices A and B, we have AB = 1 if and only if
BA = 1. Being stably finite is clearly a property that passes to subrings, and it also

clearly holds for division rings.

Corollary 5.1.14. Let H be Higman’s group defined above. The group algebra k[H|

1s stably finite whenever k is a field of characteristic zero.

5.2 Virtually compact special groups

Fix an arbitrary division ring k for the remainder of the section. Our goal is to prove
that if GG is a torsion-free virtually compact special group, then any crossed product
k x G admits a unique Linnell embedding. More generally, we will obtain the same

conclusion under the assumptions that G is a torsion-free extension of a compact
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special group by an elementary amenable group. Our arguments are based on those
of Linnell and Schick [LS07, Corollary 4.62] combined with those of Schreve [Schl14].

We begin with two preliminary results.

Lemma 5.2.1. Let k x G be a crossed product of a division ring k and a torsion-free
group G. Suppose there is a normal subgroup H < G such that G/H is elementary
amenable and such that there exists a Linnell embedding k+H — D. If the conjugation
action of G on H extends to an action on D and D x [G/H] is a domain, then the
embedding k * G — Ore(D x [G/H]) is Linnell.

Proof. First note that D % [G/H] is an Ore domain by [LS07, Lemma 2.5|. For the
sake of brevity, if A < G, then we write D4 for the division closure of k % A in
Ore(D * [G/H])) and we note that Dy = Ore(Dgna * [A/H N A]). Let N < G
be a subgroup, let tq,...,t, be distinct right N-coset representatives in G, and let
Qai,...,q, € Dy be such that

Oéltl—|—"'+06ntn:0.

By multiplying on the left by a common denominator, we may assume that «; €
Dpuny *[N/H N NJ. Fixing a collection sy, ..., sy of right H N N-coset representatives
in N, for each i we can write a; = Zle fBis; for some 8} € Dyny. The previous line
becomes .

S (Bt + -+ Blsitn) = 0.

=1
Observe that the elements s;t,, lie in different H N N-cosets, so the previous line has
the form

71T1+"‘+’}/j7"j:0

where 74 € Dpnn for each d and 7q,...,7r; is a collection of distinct H N N-coset
representatives (here, j = kn and each element 7,4 is equal to some 3/). Since the
H-cosets are left-linearly independent over D = Dy by assumption, it suffices to
consider the case where the elements r; are all contained in the same H-coset. But
then there is some g € G such that r; = hgg for all d, where the elements hy € H lie
in different H N N-cosets. We obtain ), v4hq = 0, implying that 4 = 0 for all d by
the Linnell property. But then a; = 0 for each 1 < i < n, as desired. O

The main situation where we will use the previous lemma is when H is locally

indicable and Hughes-free embeddable.
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Corollary 5.2.2. Let k% G be a crossed product of a torsion-free group G and a
division ring k. Suppose that H < G is a normal and locally indicable subgroup such
that G/ H is elementary amenable. If there is a Hughes-free embedding k+ H — Dy.p
and Dy |G/ H] is a domain, then embedding kG — Ore(Dy.g x |G/ H]) is Linnell

and is unique among Linnell embeddings up to k x G-isomorphism.

Proof. If Dy.pg exists, then it is Linnell by Theorem 2.3.10. By Lemma 5.2.1, the
embedding k * G — Ore(Dy.y * [G/H]) is Linnell. Now suppose that k « G — D
is Linnell. Then Div(k x H,D) is Hughes-free, and therefore isomorphic to Dy.y by
[Hug70|. Since D is Linnell, the cosets of G/H are left-linearly independent over Dy.,.p
and therefore there is an embedding Dy.p * [G/H| — D, where G acts by conjugation
on Di.y. By the universal property of Ore localisations, there is a homomorphism
Ore(Dy.p * [G/H]) — D, which is surjective since k x G generates D as a division

ring. This proves the uniqueness statement. [
A key tool in our arguments is the factorisation property introduced by Schreve.

Definition 5.2.3 ([Sch14]). A group G has the factorisation property if for every
finite group ) and every epimorphism G — (), there is a torsion-free elementary

amenable group E such that the previous map factors as G — E — Q).

We briefly recall the notion of goodness (in the sense of Serre), which relates the
cohomology of a group G with that of its profinite completion. More specifically,
G is good if H*(G; M) = H” (G; M) for all finite G-modules M and all n > 0 (see
[Ser97, 1.2.6, Exercise 2|). Here, G denotes the profinite completion of GG, that is, the

n
cts

inverse limit of the directed system of all finite quotients of G. The cohomology H
is the continuous cohomology of (Al, which is the cohomology of G with respect to the
continuous cochains. We will only use goodness when applying the following result
of Friedl, Schreve, and Tillmann: if G is a finitely generated good group of finite
cohomological dimension, and G virtually has the factorisation property, then G has
the factorisation property [FST17, Theorem 3.7|. Many groups are known to be good;
importantly for us, virtually compact special groups are good [Sch14, Corollary 4.3],

as are all fundamental groups of compact 3-manifolds [Cav12, Section 3.5].

Theorem 5.2.4. Let H be a locally indicable good group of finite type with the fac-
torisation property and let 1 — H — G — @ — 1 be a group extension with G
torsion-free and Q) finite. If k is a division ring such that there is a Hughes-free em-
bedding of k+ H into Dy.p, then kxG has a unique Linnell embedding into a division

ring.
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Proof. By [FST17, Theorem 3.7|, G has the factorisation property and therefore there
is a normal subgroup U < G such that U < H and G/U is torsion-free and elementary
amenable. By the uniqueness of Hughes-free embeddings, we can form each of the

following rings:
Dywv * [H/U], Dy * [G/U], Drun * [G/H].

Since H/U and G /U are torsion-free elementary amenable, Dy, * [H/U] and Dy, *
|G /U] are Ore domains by [LS07, Lemma 2.5] and so the diagram

D * [H/U] —————— Dy *[G/U]

[ [

Ore(Dywv * [H/U]) «— Ore(Dy.y * [G/U])

commutes. By Hughes-freeness of Dy.p, the map Dy, * [H/U] — Dy.p is an injec-
tion. This implies that Ore(Dy.y * [H/U]) = Dyy by the universal property of Ore
localisation.

Consider the following diagram:

Dyetg —————— Ore(Djuy * [H/U]) s Ore(Dyy * [G/U))

l [ -

Diup * [G/H] — Ore(Dyy * [H/U]) % [G/H] = Ore((Dyuy + [H/U)) % [G/H]) .

The left and middle vertical maps are the obvious inclusions and the right vertical
map is a standard isomorphism of crossed products. The two left isomorphisms come
from the isomorphism Ore(Dy.y * [H/U]) = Dy, discussed above. For the bottom

right isomorphism, it is not hard to show that the natural map
Ore(Dywv * [H/U]) * [G/H] — Ore((Dry * [H/U]) * [G/H]),

is injective. Therefore Ore(Dy.y * [H/U]) * [G/H] is a domain, which implies it is a
division ring since G/H is finite. This proves that Dy.py * [G/H] is a division ring,
which clearly contains k£ * G. Moreover, the embedding is Linnell and unique among
Linnell embeddings by Corollary 5.2.2. m

Corollary 5.2.5. Let H be a locally indicable good group of finite type with the
factorisation property and let 1 — H — G — A — 1 be a group extension with
G torsion-free and A elementary amenable. If k is a division ring such that there is

a Hughes-free embedding of k «+ H into Dy.y, then kx G embeds into a division ring.
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Proof. By Hughes-freeness, the twisted action of A on k % H extends to a twisted
action of A on Dy.py. Moreover, Dy.g * () is a domain for every finite subgroup @) of
A by the proof of Theorem 5.2.4. Thus, according to [L.S07, Lemma 2.5| Dy.py * A is
an Ore domain. Therefore, Dy, * A, and hence also (k * H) * A =2 K * GG, embeds

into a division ring. O

We can now prove the main result of this section. It applies, in particular, to

virtually compact special groups G.

Corollary 5.2.6. Let G is a torsion-free group with a normal virtually compact special
group H such that G/H is elementary amenable and k a division ring. Any crossed
product k x G has a unique Linnell embedding into a division ring D. Moreover, if H

s a normal, finite index, compact special subgroup of G, then the diagram

ks« H — (ks H)*[G/H —— kxG

I l |

Dyt > Dpupy % [G/H] ———— D
commutes.

Proof. Compact special groups are residually (torsion-free nilpotent) and therefore
Drwp exists by [JZ21, Theorem 1.1]. Moreover, compact special groups are good and
have the factorisation property [Sch14, Corollary 4.3] and are of finite type, since they
have finite classifying spaces. Hence there is an embedding of k£ * GG into a division
ring D = Dy * [G/H| by Theorem 5.2.4. The embedding k * G — D is Linnell and
unique by Corollary 5.2.2. O]

5.3 3-manifold groups

Fix an arbitrary division ring k. The goal of this section is to prove that twisted
group algebras of torsion-free 3-manifold groups embed into division rings. We will

make repeated use of the Scott Core Theorem, which is stated below.

Theorem 5.3.1 (Scott Core Theorem [Sco73|). Let M be a 3-manifold with finitely
generated fundamental group. There is a compact submanifold N of M such that the

inclusion N < M induces an isomorphism 1 (N) = m(M).

Our proof will also rely on the Prime and JSJ Decomposition Theorems for 3-

manifolds and on the graph of rings construction discussed in the previous section.
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Since we do not want to assume M is orientable, we will need statements of these
decomposition theorems in the non-orientable case. The statements will be as found
in Bonahon’s survey [Bon02, Theorems 3.1, 3.2, and 3.4], so we take some care to
ensure that the definitions recalled in the next paragraph coincide with Bonahon’s.

An embedded copy of S? in M is essential if no component of M ~. S? is homeo-
morphic to a 3-ball. An embedded copy of RP? in M is essential if M ~.RP? has two
components. Then M is wrreducible if it contains no essential spheres or projective
planes. An embedded copy of the torus 72 in M is essential if the induced map
m(T?) — m (M) is injective. An embedded Klein bottle K in M is essential if the
map 71(7T?) — 7 (K) — m (M) is injective, where the first map is induced from the
double cover T? — K.

Since we always assume that (M) is torsion-free, we will actually not need to

worry about embedded copies of RP?, as the following lemma shows.

Lemma 5.3.2. If M is a 3-manifold and RP?> — M is an embedding, then the

induced homomorphism m (RP?) — (M) is injective.

Proof. Identify RP? with its image in M. Fix an exhaustion of M by compact 3-
M;. It will be sufficient

to prove that m(RP?) — my(M;) is non-trivial (and hence injective) for each i € I,

dimensional submanifolds all containing RP?, say M = Uier
since my (M) = lim, _ i (M;).

Fix some i € I, let M/ be a copy of M;, and let N = M; Usy, M/ denote the
double of M; over its boundary. Observe that m(M;) < 7 (V), since M; is a retract
of N. We have RP?2 C M; C N.

The lifts of the embedded RP? to the universal cover N of N form a collection
of 2-spheres or projective planes in N. In [Sam69]|, Samelson proves that smooth
hypersurfaces in R™ must be orientable, and remarks at the end of his note that the
proof extends to the case of hypersurfaces in simply connected manifolds. Hence, the
embedded RP? lifts to a collection of 2-spheres in the universal cover. But then a
loop in N representing the generator of 71(RP?) has a lift to a non-closed path in
N , and therefore the loop is non-trivial in 71 (V). In particular, the same loop is

non-trivial in 7 (M;), as desired. O

We also have the following alternative definition of an embedded Klein bottle,
which will be useful for the group-theoretic non-orientable JSJ Decomposition Theo-

rem given below.
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Lemma 5.3.3. An embedded Klein bottle K C M is essential if and only if the

induced map m (K) — m (M) is injective.

Proof. The covering map is 7? — K is m-injective, so if the embedding K C M is
mi-injective, then so is the map 7% — K — M.

Let t: K < M be the embedding and assume that 7% — K < M is m-injective.
Then either 1,71 (K) contains Z? as an index 2 subgroup in which case ¢ is 7-injective,
or t,m(K) = Z? But Hi(K) = Z @ Z/2, which rules out the second case. O

The (non-orientable) Prime Decomposition Theorem states that every closed 3-
manifold M can be cut along a collection of pairwise disjointly embedded essential
spheres and projective planes such that the complementary components are all ir-
reducible or homeomorphic to S? x S' minus an open 3-ball (unless M = 5% x S*
to begin with). We refer the reader to [Bon02, Theorems 3.1 and 3.2] for precise
statements. Since we are assuming 7 (M) to be torsion-free, there are no copies of
RP? to cut along by Lemma 5.3.2. This leads to the following group-theoretic version

of the Prime Decomposition Theorem for 3-manifolds with torsion-free fundamental

group.

Theorem 5.3.4 (Group-theoretic Prime Decomposition Theorem). Let M be a closed
3-manifold such that wi (M) is torsion-free. Then there is a free group F and finitely
many compact, irreducible 3-manifolds My, ..., M, each with (possibly empty) incom-

pressible boundary such that
G Fxm (M) - xm(M,).

Note that we have used Theorem 5.3.1 to formulate the statement in this way:.

The non-orientable JSJ Decomposition Theorem states that any irreducible 3-
manifold M can be cut along a finite collection of essential pairwise disjointly em-
bedded 2-tori and Klein bottles in such a way that each complementary component
is either Seifert fibred or hyperbolic (see [Bon02, Theorem 3.4]). This leads to the

following group-theoretic statement of the JSJ Decomposition Theorem.

Theorem 5.3.5 (Group-theoretic JSJ Decomposition Theorem). Let M be a closed,
irreducible 3-manifold. Then m (M) splits as a graph of groups, where each vertex
group 1s the fundamental group of a hyperbolic or Seifert fibred 3-manifold and each

edge group is isomorphic to Z X 7 (where the extension may be trivial).
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The following lemma is well known; we include a proof because we have not seen
it appear without the assumption of orientability. The proof is similar to that of
[How82, Theorem 6.1], the only difference being the use of Z/2 coefficients to apply

Poincaré duality isomorphisms for non-orientable manifolds.

Lemma 5.3.6. If M is an aspherical 3-manifold such that cd(m(M)) < 2, then
w1 (M) is locally indicable.

Proof. Let G be a non-trivial finitely generated subgroup of m (M) and suppose for
a contradiction that Hy(G;Z) = 0. By the Universal Coefficient Theorem,

H,(G;7Z/2) = HY(G;Z/2) = 0

as well.

Let M — M be the covering corresponding to G and let N C Mbea compact sub-
manifold such that 7 (V) = G and the inclusion N — M induces a mi-isomorphism.
By Poincaré duality, H*(N,ON;Z/2) = H,(N;Z/2) = 0, and the long exact sequence
of the pair (N, dN) contains the sequence

H'(N;Z/2) — H'(ON;Z/2) — H*(N,0N;Z/2),

so H'(ON;Z/2) = 0. Hence, the components of N must all be 2-spheres, which we
denote by S, ...,S,.

Since each S; is nullhomotopic in M (because WQ(Z\/I\ ) = m(M) = 0), each S;
bounds a 3-ball B; (see, e.g., [Rub97|). We remark that in the proof of [How82,
Theorem 6.1|, Howie concludes that S; bounds a “fake 3-cell”, which is a compact
contractible 3-manifold with 2-sphere boundary; the resolution of the Poincaré Con-
jecture implies that such manifolds are actually 3-balls.

Note that N is not contained in any of the B;’s, for if this was the case the iso-
morphism 1 (N) — 7T1(J\/4\ ) would factor through m1(B;) = 1 for some 4, contradicting
the assumption that G is non-trivial. Hence, M= NU DiuU---UD, is a closed
aspherical 3-manifold. But then Cd(7T1<]/\4\)) = c¢d(G) = 3, a contradiction. O

The locally indicable case of the main result (Theorem 1.3.3) is more straightfor-
ward than the general case and does not rely on the graph of rings construction, so
we record it separately. This case will also be used in the proof of the general case

below.

Theorem 5.3.7. If M is a 3-manifold with locally indicable fundamental group, then
any twisted group algebra k x w (M) admits a Hughes-free embedding.
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Proof. To prove that a Hughes-free embedding exists, it is sufficient to prove that
k « H admits a Hughes-free embedding for any finitely generated subgroup H of
m1(M). Hence, we may assume (M) is finitely generated, and therefore that there
exists an epimorphism m (M) — Z. Let M denote the infinite cyclic cover. We
have cd(m(f\/f\ )) < 2. By |[KL24, Theorem 1.1], m(]\? ) is locally (virtually free-by-
cyclic). Free-by-cyclic groups have the factorisation property by [FST17, Lemma 2.4].
Since the finitely generated subgroups of 7r1(]\/4\ ) are fundamental groups of compact
3-manifold groups, 7T1(J\7 ) is locally good by [Cav12, Section 3.5]. Hence, k x H
admits a Hughes-free embedding for every finitely generated subgroup H < 7r1(]\/4\ )
by Theorem 5.2.4. Hence, k 7T1(]/W\ ) admits a Hughes-free embedding. Finally the
twisted group algebra of m (M) = Wl(M\ ) X Z admits a Hughes-free embedding by
[Hug72]. O

We are now ready to prove the general case.

Theorem 5.3.8. Let M be a 3-manifold, let k be a division ring, and let k * w (M)
be a twisted group algebra. If m (M) is torsion-free, then k x w (M) embeds into a

division ring.

Proof. We begin by making some simplifying assumptions. The proof of the following

claim is essentially the same as [Kie20a, Proposition 4.11 (3)].

Claim 5.3.9. [t is enough to prove the theorem in the case where M 1is compact.

Proof. Since M is a manifold, m (M) is countable. Thus, we can write m (M) as
an increasing countable union | J,, .y H, of finitely generated subgroups H,, < m1(M).
Note that each H,, is itself the fundamental group of a compact 3-manifold by the
Scott Core Theorem. For each n € N, assume there is an embedding k x H, — D,,
where D,, is a division ring. Put a non-principal ultrafilter w on N and consider the
ultraproduct D := [ D, which is also a division ring. There is a map k* G — D
which sends an element x € k * G to the class of (x,),en, Where z,, is the image of z
in D, if x is supported in H,, and is zero otherwise. It is easily verified that this is

an injective ring homomorphism. o
From now on we assume that M is compact.
Claim 5.3.10. [t is enough to prove the theorem in the case where M 1is closed.

Proof. If M is not closed, let N = M Ugys M be the double of M along its boundary.
Then 7 (M) < m(N), since M is a retract of N. Hence, if k * m(N) embeds into a

division ring, then so does k w1 (M). o
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Claim 5.3.11. [t is enough to prove the theorem in the case where M is closed and

irreducible.

Proof. By the previous claim, we may assume that M is closed. By Theorem 5.3.4,
m1(M) splits as a free product of fundamental groups of irreducible 3-manifolds with
(possibly empty) incompressible boundary and a free group. If the twisted group
ring of each free factor embeds into a division ring, then so does k w1 (M) by Theo-
rem 5.1.10.

The previous paragraph shows that we may suppose that M is irreducible; we
claim it is enough to assume that M is closed and irreducible. Indeed, if M has
non-empty incompressible boundary then cd(m(M)) < 2, and therefore k x 7 (M)

embeds into a division ring by Lemma 5.3.6 and Theorem 5.3.7. o

Hence, we assume that M is a closed, irreducible 3-manifold. By Theorem 5.3.5,
m (M) splits as a graph of fundamental groups of (hyperbolic of Seifert fibred) 3-
manifolds with Z x Z edge groups. Suppose that at least one of the vertex groups
is hyperbolic; thus, M is either a mixed 3-manifold or a hyperbolic 3-manifold. In
either case, M is virtually special by [Ago13] or [PW18], and therefore virtually fibres
over the circle by [Ago08|. Note that surface-by-cyclic groups have the factorisation
property by [FST17, Proposition 3.6]. Thus, m (M) is good and virtually has the
factorisation property, so we conclude that & % 71 (M) embeds into a division ring by
Theorem 5.2.4.

We are left with the case that every vertex group is the fundamental group of a
Seifert fibred 3-manifold (i.e. the case where M is a graph manifold). First assume that
the graph of groups contains a single vertex group with no edge groups. By [FST17,
Lemma 3.9|, (M) has the factorisation property, and again using the goodness of
m1 (M) we conclude that k * w1 (M) admits an embedding into a division ring.

Now assume that the graph of groups contains multiple vertex groups. In this
case, each vertex group is the fundamental group of a Seifert fibred 3-manifold with
non-empty toroidal boundary. In particular, each vertex group is locally indicable
and therefore admits a Hughes-free embedding. It then follows from Theorem 5.1.10
that k * m; (M) admits an embedding into a division ring. O
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Appendix A

Computations

In the first appendix, we present examples of locally indicable groups embedding into
division rings and computations of their k-L?-Betti numbers (k will always denote a
field in what follows).

Example A.1 (Amenable groups). If G is amenable and k[G] has no zero divisors,
then k[G] is an Ore domain by Kielak’s appendix to [Bar19]. Since Ore localisation is
a flat functor (just as in the commutative setting), we find that H,, (G; Ore(k[G])) = 0
for all n, assuming that GG is non-trivial.

If k|G] — D is an arbitrary embedding into a division ring, then it factors as
k[G] < Ore(k[G]) < D by the universal property of Ore localisation. Since exten-
sions of division rings are flat, we also have H,,(G;D) = 0 for all n, again assuming
G to be non-trivial.

Thus, if G is a non-trivial locally indicable amenable group, then
Ore(k[G]) = Dk[g]
exists and bg)(G; k) = 0 for all fields k£ and all n > 0.

Example A.2 (Free groups). Let F' be the free group on the set S and let k[F] — D

be any embedding into a division ring. There is a free resolution

0— P k[Fle, — k[F] — k — 0
where @, ¢ k[Fles — k[F] is determined by e, — s — 1, and Ek[F] — k is the
augmentation map. It follows that the induced map @, .y De; — D is non-trivial,

and hence is surjective. In particular, the D-dimension of its kernel is rk(F') — 1, so
H,(F; D) = DK=Y and H, (F; D) = 0 otherwise.
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Note that free groups are residually torsion-free nilpotent, so the Hughes-free
division ring Dy¢ exists for all fields k. Hence, b (F:k) = tk(F)—1 and b (F; k) =
0 for all n # 1.

Example A.3 (Surface groups). Let ¥, be a closed, orientable surface of genus g¢.
Since 71 (X,) is residually torsion-free nilpotent, the Hughes-free division ring Dy¢) ex-
ists for all fields k. The kernel N of any epimorphism 7 (X,) — Z is free, and in partic-
ular, has vanishing k-L2-Betti numbers above dimension 1. Then bl@)(m(Zg); k)=0
for all 7 > 2 by Theorem 2.5.5. Hence, b?)(m(Zg); k) = 2g—2. We will see below how
this generalises to other one-relator groups (without assuming that the embedding

into a division ring is Hughes-free).

Example A.4 (Fibred groups). Suppose that G admits a virtual map onto Z with
kernel of finite type. Then Theorem 2.5.5 implies that the k-L2-Betti numbers of G
are all zero, provided they are defined. For example, if G is of the form F,, x Z, then
Dy exists for every field k by [Hug72], and thus G is k-L*-acyclic. Suppose that G is
the fundamental group of a finite-volume hyperbolic 3-manifold. Then G is virtually
of the form m;(X) x Z for some surface (possibly with boundary) ¥ by the work of
Agol and Wise [Agol3, Wis21|, and Dy exists for any finite-index subgroup H < G
by Theorem 5.3.8.

Example A.5 (One-relator groups). A group is a one-relator group if it admits a
presentation of the form G = F(S)/{r), where F(S) is the free group on S and
r € F(S). If r is not a proper power, then G is locally indicable [Bro84|, and
therefore Dy exists for any field of characteristic zero by Theorem 2.5.3. In general,
it is known that k[G] embeds into a division ring for all division rings &k by [LL78|, but
it is not known whether the embedding is Hughes-free. Note that L?-Betti numbers
of arbitrary one-relator groups were originally computed by Dicks and Linnell [DLO7].

Let G be a torsion-free one-relator group, let k be a division ring, and let D be any
division ring that contains k[G]. Suppose that r € F(S) is a non-trivial, cyclically
reduced word. Then the presentation complex of (S | r) is aspherical by [Lyn50] and

thus yields a free resolution
0 — k[G] — EP kIG] — k[G] — k — 0.
seS

The image of k[G] in @, ¢ k[G] is non-trivial, which implies that D — @, (D is
injective. Hence, H;(G; D) is only non-zero in degree one, and so dimp H;(G; D) =

|S| —2. Thus, knowledge of the Atiyah Conjecture for one-relator groups yields a very
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short computation of their L2-Betti numbers (in the torsion-free case). While it is
not known whether Hughes-free division rings exist for general torsion-free one-relator
groups this holds whenever G is virtually compact special by Theorem 5.2.4. Many
one-relator groups are known to be virtually compact special (see [Lin22|).
One-relator groups with torsion are virtually RFRS by [Wis21, Corollary 19.2], and
therefore have a finite-index subgroup all of whose group algebras have Hughes-free
embeddings. The computation of the k-L2-Betti numbers of a Hughes-free embed-
dable subgroup of finite-index can be done using a length 2 projective resolution of
C provided by the Lyndon Identity Theorem [Lyn50], and is not much more difficult
than the computation above (see [DLOT7|). Thus bl(-z)(G) =0 forall i > 1 for G a

one-relator group with torsion.

Example A.6 (Limit groups). A finitely generated group G is a limit group if it
has the same existential first order theory as some free group. Alternatively, G is a
limit group if and only if it is fully residually free, meaning that for any finite subset
S C @G, there is a free group F' and a homomorphism G — F that is injective on
S. This definition immediately implies that limit groups are residually torsion-free
nilpotent, and therefore Dy exists for any field £ and any limit group G.

By [Kocl10, Corollary BJ, limit groups are free-by-(torsion-free nilpotent). So for
any field k and limit group G, the Hughes-free division ring Dy q) is of weak dimension
at most one as a k[G]-module by Claim 4.3.12. It follows that

0 otherwise.

Note that this agrees with the homology gradient computations for limit groups car-
ried out by Bridson and Kochloukova in [BK17, Corollary C]| (this is a special case of

the positive characteristic Liick Approximation Conjecture).

Example A.7 (Graphs of groups). Let I be a graph and let G = (G,,G.;I") be
a graph of groups with fundamental group G = m(G). Suppose that G is locally
indicable and that Dy g exists and assume that b,(f)(Ge; k) = 0 for every edge e of T’
and all n > 0. Then Chiswell’s Mayer—Vietoris long exact sequence in group homology

[Chi76] with coefficients in Dy immediately implies that

b Zb (Gui k),

where the sum is taken over all the vertices v of I'. A special and interesting case of

this is when G is a graph of free groups with cyclic edge groups.
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Let G' = ;¢; Gy, where each group G is non-trivial and locally indicable. If Dy g,
exists for each 7 € I, then Dyq exists by [San08, Corollary 6.13(iv)]. Chiswell’s long

exact sequence then gives

5(2)(G. k) = > ier b%Q)(Gi; k)y+1]I|—1 ifn=1
! ’ dict b1(12) (Gi; k) otherwise.

Example A.8 (3-manifold groups). Let M be a 3-manifold with locally indicable fun-
damental group GG. That G be locally indicable is not a strong assumption, as finitely
generated 3-manifold groups are virtually locally indicable (see [AFW15, Flowchart
1]). Then Dyq exists by Theorem 5.3.7, so we can compute the k-L?-Betti numbers
of G. Note that the usual L2-Betti numbers were first computed by Lott and Liick
[LL95| before the resolution of Thurston’s Virtual Fibring Conjecture.

By the Prime Decomposition Theorem (Theorem 5.3.4), it suffices to consider the
case where M is irreducible with (possibly empty) incompressible boundary.

First assume that M has a non-empty boundary, and let ¢, ..., %, be the incom-
pressible boundary components of M; denote their fundamental groups by Hy, ..., H,.
The collection of fundamental groups is denoted by H and the homology of the pair
(G,H) with coefficients in a k[G]-module M is given by

Hy(G, H; M) == Tor (M, Ag ),

where Ag/y is the kernel of the natural augmentation map @), k[G/H;| — k (see
[BET78]). The short exact sequence 0 — Ag/y — @, k[G/H;] — k — 0 induces a

long exact sequence which contains the following portion:

H0<Ga%§Dk[G]> - @Hl(Hi;Dk[G]) - Hl(G§Dk[G]) - H1(G7H;Dk[0])~

=1

By definition, Ho(G, H; Dyjy) = 0. By Poincaré duality,
H, (G, H; Dye)) = H*(G; Dyjgy)-

But G is virtually free-by-cyclic by [KL23, Theorem 1.1], and therefore ng)(G; k)=0
by Theorem 2.5.5. Then H*(G; Dye)) = 0 by Proposition 2.5.4(iii). Hence, the k-L2-
Betti numbers of G are concentrated in degree one.

Now assume that M is a closed and irreducible. By the JSJ Decomposition The-
orem 5.3.5 and Example A.7, the k-L2-Betti numbers of G equal the sum of the

corresponding k-L2-Betti numbers of the individual pieces of the JSJ decomposition.
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Each piece is either hyperbolic or Seifert fibred. The k-L2-Betti numbers of the hy-
perbolic pieces all vanish by Example A.4, so it suffices to consider the Seifert fibred
case. Let H be the fundamental group of a Seifert fibred manifold. By passing
to a finite-index subgroup, we may assume that H fits into the (central) extension
1 - Z — H — m(X) — 1 for some surface ¥. The Lyndon-Hochschild-Serre

spectral sequence associated to this extension is
H,(m1(2); Hq(Z;Dk[H])) = Hy1o(H; Dk[H])-

But Hy(Z; Dyry) = 0 for all ¢ > 0 by Example A.1, and therefore Hy,, o (H; Dymy) = 0.
Putting all of this together, we obtain the following statement: if M is an irre-
ducible 3-manifold with non-trivial locally indicable fundamental group G and (pos-

sibly empty) incompressible boundary, then

0 otherwise.

In a sense, the examples we have seen so far are not very interesting: the k-L>-
Betti numbers computed never depended on the ground field k£ and have always been
concentrated in degree one. It is easy to construct examples where the latter property
fails: bg) (Fy X Fy; k) = 1 for all fields k by a version of the Kiinneth formula. The next
example—taken from the article [FHL24| of the author, Hughes, and Leary—generalises
this, and gives examples of groups G where bg)(G; k) depends on k.

Example A.9 (Right-angled Artin groups). This example will be the most involved
so far. Note that the classical L?-Betti numbers of RAAGs were computed by Davis
and Leary in [DLO03|.

The right-angled Artin group (RAAG) on the simplicial complex I' is the group

given by the presentation
Ar = ({v} € I'| [u,v] if and only if {u,v} € T').

Note that adding simplices of dimension at least two to I' does not alter the presen-
tation of Ar, so we will always assume that I' is a flag complex.

We begin by recalling a Mayer—Vietoris spectral sequence constructed by Davis
and Okun in [DO12|. Let P be a poset with the property that for every pair of elements
a,b € P, there is a third element ¢ € P such that ¢ < a,b. The flag realisation Flag(P)
of P is the simplicial complex, whose simplices consist of finite chains of elements in P
(we include empty chain). For example, if P = {a < b}, then Flag(P) is a 2-simplex.

For each simplex ¢ in Flag(P), let min(o) € P be the minimal vertex in o.
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A system of coefficients on P is a covariant functor A: P — Modpg for some ring
R. The homology He(P;.A) of P with coefficients in A is the homology of the chain
complex
Co(Flag(P);A) = @B  A(min(o))
o€Flag(P)(™)
where Flag(P)™ is the set of n-simplices in Flag(P), and the boundary maps are
induced from the boundary maps of the simplicial chain complex of Flag(P) and the
functor A.
A poset of spaces over P is a CW complex X together with a set of subcomplexes
X = {X,}aep such that
(1) X =Uaep Xas
(2) X, C X, whenever a < b;
(3) X is closed under non-empty finite intersections.
We are now ready to give the spectral sequence of [DO12[; we state the equivariant

homological version.

Proposition A.9.1 ([DO12, Lemmas 2.1 and 2.2|). Let (X, X) be a poset of spaces
over P. Let G be a group acting on X preserving each X, € X. Let M be an
arbitrary k[G]-module, and consider the systems of coefficients Hf on P given by

a— HqG(Xa; M) for each g = 0. There is a convergent spectral sequence

By, =Hy(PHT) = HY, (X M).

p+q

If the induced maps HqG(Xa;M) — Hf(Xb;M) are zero for all ¢ > 0 and all pairs
a < b, then the second page is given by
B}, = @D H,(Flag(P=,), Flag(P-.); HY (X, M),
acP

where Ps, (resp. Ps,) is the subposet of P consisting of elements greater than (resp.

greater than or equal to) a.

Let Ar be the RAAG on the flag complex I and let Xt be the Salvetti complex of
Ar. Let T, denote the combinatorial n-torus in X1 associated to the (n — 1)-simplex
o of I'. Hence, T is the unique of Xr. Let 3(\; denote the universal cover of Xr, and
let T, be the preimage of T, under the covering map Xt — Xr. The pair (3\(;, {i})
is a poset of spaces over a poset P, where Flag(P) is isomorphic to the cone on the
barycentric subdivision of I'. Note that Ar acts on the poset of spaces, so we may

apply Proposition A.9.1 (in the case M = Dy4,). By Example A 1,
I—IqAF (Tcr; Dk[AF]) = Hq(Zdim(a)—H; Dk[Ar}) =0
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for all ¢ > 0 whenever ¢ # &. Hence, the spectral sequence of Proposition A.9.1

collapses on page two, whose only non-zero terms have the form
B2, = H, (Flag(P), Flag(P-); 1" (T; Dygayy) ) = Hy (Flag(P), Flag(P-); Diar)

Since Flag(P) is isomorphic to the cone CT' and Flag(P-y) is isomorphic to I'; the
relative homology of the pair (Flag(P), Flag(P~)) is isomorphic to the homology of
the suspension ST'. Thus,

E} o = Hy(ST; D) = Hyo1 (T Dy,

p,0 —

where H, denotes reduced homology. We therefore obtain the following result, extend-
ing the computation of Davis and Leary, and showing that the k-L2-Betti numbers
of RAAGs depend on the ground field &.

Theorem A.9.2 (|[DL03, Theorem 1],[FHL24, Theorem 3.15]). Let Ar be the right-
angled Artin group on the flag complex I'. Then

b (Ap; k) = by (T; k)
for allm > 0.

We remark that the k-L2-Betti numbers by (Ar; k) agree with the homology gra-
dients computed by Avramidi, Okun, and Schreve in [AOS21, Theorem 1].

To conclude, we remark that the k-L?-Betti numbers have already shown to be
useful obstruction to fibring. In [AOS24|, Avramidi, Okun, and Schreve construct a 7-
manifold M with Gromov hyperbolic fundamental group G such that béQ)(G; F,) >0
for odd primes p. Hence, M cannot virtually fibre over the circle. Note, however,
that M is L?-acyclic (and therefore is not a counterexample to the Singer Conjecture),
so the usual L2-Betti numbers do not suffice to obstruct virtual fibring. It is worth
mentioning that G is virtually compact special, and therefore G virtually algebraically
fibres with kernel of type FP(Q) by Theorem 3.2.3.
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Appendix B

Questions and conjectures

B.1 Fibring

A natural direction of research is to promote the virtual algebraic fibrations I" of simple
type lattices in SO(n, 1) (for n odd) to virtual fibrations of the space SO(n,1)/I" over
S1. While this seems like a difficult problem, there are intermediate steps that could
be more approachable, such as strengthening the finiteness properties of the kernels of
the algebraic fibrations. The finiteness properties FP, (k) for a field k are all strictly
weaker than the finiteness property FP,(Z), except when n = 1. It would thus be
interesting if a homological invariant could detect virtual fibring with FP,,(Z) kernels
among the class of RFRS groups. By Theorem A.9.2, there are RAAGs that are L2-
acyclic but not F,-L*-acyclic for some primes p, and hence they can never fibre with
kernel of type FP(Z). Hence L*-Betti numbers alone do not detect virtual fibring
in the class of RFRS groups. However, if a RAAG is F,-L?-acyclic for all p, then it
algebraically fibres with kernel of type FP(Z) (the Bestvina—Brady group is such a

kernel in this case). This motivates the following more general conjecture.

Conjecture B.1. Let G be a RFRS group of type FP, . 1(Z). The following are
equivalent:
(1) there exists a finite-index subgroup H < G admitting an epimorphism H — 7
with kernel of type FP,(Z);
(2) b§2)(G;IFp) =0 for all i < n and for all primes p.

It is known that being of type FPs(k) over all fields & does not imply being of
type FP5(Z) by a result of R. Kropholler [Kro21]|, but the examples of such groups
are not RFRS and it is not clear that they could occur as an algebraic fibre in a
group of type FP(Z), so they are not counterexamples to Conjecture B.1. Note that
if G is of type FP(Z) and is finitely presented, then G has a classifying space that
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is finitely dominated. Moreover, if G satisfies the Farrell-Jones Conjecture, then G
admits a finite classifying space. By further work of Farrell [Far72|, if w1 (M) satisfies
the Farrell-Jones Conjecture and M is a manifold of dimension at least 6, then
algebraic fibrations with kernel of finite type are always induced by fibrations over
S'. Thus, if M is a manifold of dimension at least 7 with an F,-L*-acyclic virtually
compact special fundamental group for all primes p and Conjecture B.1 is true, then
this would reduce the problem of virtually fibring M over the circle to exhibiting a
virtual algebraic fibration of m; (M) with finitely presented kernel. While this is still a
difficult task, an example of a hyperbolic 7-manifold with such an algebraic fibration
has already been constructed [IMM24]. These questions are all very interesting even
in the special case of uniform lattices of simple type in SO(n, 1), which are already

known to be virtually compact special [ BHW11].

Conjecture B.2. Let I' < SO(n,1) be a lattice. For all primes p, the F,-L*-Betti

numbers of I' are concentrated in the middle dimension.

Using the terminology of [AOS24], an alternate way to state this conjecture is
that such a lattice I' satisfies the F,-Singer Conjecture for all primes p. This is
closely related to the problem of determining the mod p homology growth of lattices
[' < SO(n, 1). While there are vanishing results for mod p homology growth of lattices
of higher rank [ABFG25], very little is known in rank one.

B.2 Coherence and virtually free-by-cyclic groups

While it seems unlikely that Conjecture 1.2.5 is true in full generality—especially the
implication from coherence to the vanishing of the second L2-Betti number-it is very

plausibly true in some well-behaved classes of groups.

Question B.3. Are homological coherence and the vanishing of the second L*-Betti
number equivalent in the class of RFRS groups of rational cohomological dimension

at most two?

A positive answer to Question B.3 would imply that RFRS groups of cohomological
dimension at most two are coherent if and only if they are virtually free-by-cyclic,
and it would also imply that homological coherence is equivalent to coherence for
2-dimensional RFRS groups.

Wise conjectures that all hyperbolic one-relator groups are virtually free-by-cyclic
[Wis20a, Conjecture 17.8]. We believe it is likely the case that all hyperbolic one-

relator groups are virtually special, so Wise’s conjecture would follow from [KL24] or
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Theorem 1.2.1. In fact we propose the following characterisation of virtually free-by-

cyclic one-relator groups.

Conjecture B.2.1. A one-relator group is virtually free-by-cyclic if and only if it is

virtually special.

In Corollary 4.3.15, it was shown that Strong Parafree Conjecture implies that
finitely generated parafree groups are coherent. This motivates the following weaker
conjecture, which will be familiar to experts but which the author has not seen appear

in the literature.
Conjecture B.4. Finitely generated parafree groups are coherent.

By Corollary 1.2.4, poly-Z groups of cohomological dimension at most two with
vanishing second L2-Betti number are coherent and have coherent group algebras. In
fact, many classes of coherent groups are also known to have coherent group algebras,
such as the classes of free-by-cyclic groups [FH99, HLA22], one-relator groups [JZ123],
and coherent elementary amenable groups [HKKL24|. In general, neither implication
in the following question is known (recall that we require all finitely generated one-

sided ideals to be finitely presented for a ring to be coherent).

Question B.5. Let G be a group and let k be a field. Is G coherent if and only if
k[G] is coherent?

The following special case is of historical interest, since 3-manifold groups have
long been known to be coherent by Scott’s Core Theorem [Sco73]. A solution would

like involve pushing current methods beyond cohomological dimension two.
Conjecture B.6. If M is a 3-manifold, then klm(M)] is coherent for any field k.

By the JSJ and Prime Decomposition Theorems, it would suffice to prove the
conjecture in the case that M is a hyperbolic 3-manifold or a Seifert fibred space.

The methods used in Chapter 4 and in [JZL23| to prove that a group algebra is
coherent use Hughes-free embeddings. There is not a good notion of a Hughes-free
embedding for the group ring Z[G] with integral coefficients (or other non-division

ring coefficients), and thus it is often not possible to prove that Z[G] is coherent.
Question B.7. Is there a group G such that Q|G| is coherent but Z[G] is incoherent?
The following special cases are interesting.

Conjecture B.8. Z[G] is coherent if G is either a free-by-cyclic group or a one-

relator group.
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B.3 Division rings

In Section 5.1, it is shown that if G = (G, G.) is a graph of groups and k is a field such
that k[G,] admits a Hughes-free embedding for each vertex group G,, then k[m(G)]
admits an embedding into a division ring. One can ask several questions about the

properties of this embedding.

Question B.9. Let G = (G,,G.) be a graph of groups, let k be a field, and suppose
that k[G,] admits a Hughes-free embedding. Let k[m(G)] — D be the embedding
constructed in Theorem 5.1.10.

(1) Is the embedding Linnell?

(2) If m1(G) is locally indicable, is the embedding Hughes-free?

(3) If m1(G) is locally indicable, is the embedding universal?

A positive answer to (1) of course implies a positive answer to (2). Using the
Magnus hierarchy for one-relator groups, (2) and (3) also imply the following con-
jecture, which is an important special case of a conjecture of Jaikin-Zapirain [JZ21,

Conjecture 1].

Conjecture B.10. If G is a torsion-free one-relator group, the k|G| admits a Hughes-

free and universal embedding into a division ring for every field k.

When £k is of characteristic zero, then it is known that a Hughes-free embedding
exists by the resolution of the Atiyah Conjecture for locally indicable groups [JZLA20].
It is still unknown, however, whether this embedding is universal. In the case of 3-
manifold groups, we could show that if 7 (M3) is locally indicable, then its group

algebras admit Hughes-free embeddings.

Question B.11. If w1 (M?3) is locally indicable, are the embeddings of its group algebra

into Hughes-free division rings constructed in Theorem 5.5.8 universal?

This would follow easily from a positive answer to the following question, which
is yet again an interesting special case of Jaikin-Zapirain’s conjecture that should be

more tractable.

Question B.12. Let G be a locally indicable group that is virtually compact special.
Are the Hughes-free embeddings of its group algebras constructed in Theorem 5.2.)

universal?
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